當我訓練的scikit-learn v0.15 SGDClassifier
這些選項:SGDClassifier(loss='log', class_weight=None, penalty='l2')
,訓練,並沒有錯誤完成。 然而,當我在訓練這個分類與class_weight='auto'
scikit學習v0.15,我得到這個錯誤:SGDClassifier與class_weight =自動上失敗scikit學習0.15而不是0.14
return self.model.fit(X, y)
File "/home/rose/.local/lib/python2.7/site-packages/scikit_learn-0.15.0b1-py2.7-linux-x86_64.egg/sklearn/linear_model/stochastic_gradient.py", line 485, in fit
sample_weight=sample_weight)
File "/home/rose/.local/lib/python2.7/site-packages/scikit_learn-0.15.0b1-py2.7-linux-x86_64.egg/sklearn/linear_model/stochastic_gradient.py", line 389, in _fit
classes, sample_weight, coef_init, intercept_init)
File "/home/rose/.local/lib/python2.7/site-packages/scikit_learn-0.15.0b1-py2.7-linux-x86_64.egg/sklearn/linear_model/stochastic_gradient.py", line 336, in _partial_fit
y_ind)
File "/home/rose/.local/lib/python2.7/site-packages/scikit_learn-0.15.0b1-py2.7-linux-x86_64.egg/sklearn/utils/class_weight.py", line 43, in compute_class_weight
raise ValueError("classes should have valid labels that are in y")
ValueError: classes should have valid labels that are in y
這是什麼原因呢?
僅供參考,這裏的一對class_weight
文檔:
Preset for the class_weight fit parameter. Weights associated with classes. If not given, all classes are supposed to have weight one. The 「auto」 mode uses the values of y to automatically adjust weights inversely proportional to class frequencies.
您正在使用的OSX相同scikit學習的版本?版本0.15剛剛發佈,也許你可以嘗試一下。如果錯誤仍然存在,即相同的代碼引起了在Linux EC2的錯誤,而不是MacOSX上,那麼你應該考慮這個報告對scikit學習郵件列表。 – eickenberg
我使用的是版本0.15。在您的回溯 –
尋找您所使用的β1,不釋放0.15 – eickenberg