2012-12-12 50 views
1

爲了得到一個Cassandra插入更快我使用多線程,它的工作正常,但如果我添加更多的線程它沒有任何區別,我想我沒有生成更多的連接,我想也許我應該使用pool.execute(f,* args,** kwargs)但我不知道如何使用它,文檔很少。繼承人到目前爲止我的代碼..Cassandra Pycassa連接池,如何正確使用?

import connect_to_ks_bp 
from connect_to_ks_bp import ks_refs 
import time 
import pycassa 
from datetime import datetime 
import json 
import threadpool 
pool = threadpool.ThreadPool(20) 
count = 1 
bench = open("benchCassp20_100000.txt", "w") 

def process_tasks(lines): 

    #let threadpool format your requests into a list 
    requests = threadpool.makeRequests(insert_into_cfs, lines) 

    #insert the requests into the threadpool 
    for req in requests: 
     pool.putRequest(req) 

    pool.wait() 

def read(file): 
    """read data from json and insert into keyspace""" 
    json_data=open(file) 
    lines = [] 
    for line in json_data: 
     lines.append(line) 
    print len(lines) 
    process_tasks(lines) 


def insert_into_cfs(line): 
    global count 
    count +=1 
    if count > 5000: 
      bench.write(str(datetime.now())+"\n") 
      count = 1 
    #print count 
    #print kspool.checkedout() 
    """ 
    user_tweet_cf = pycassa.ColumnFamily(kspool, 'UserTweet') 
    user_name_cf = pycassa.ColumnFamily(kspool, 'UserName') 
    tweet_cf = pycassa.ColumnFamily(kspool, 'Tweet') 
    user_follower_cf = pycassa.ColumnFamily(kspool, 'UserFollower') 
    """ 
    tweet_data = json.loads(line) 
    """Format the tweet time as an epoch seconds int value""" 
    tweet_time = time.strptime(tweet_data['created_at'],"%a, %d %b %Y %H:%M:%S +0000") 
    tweet_time = int(time.mktime(tweet_time)) 

    new_user_tweet(tweet_data['from_user_id'],tweet_time,tweet_data['id']) 
    new_user_name(tweet_data['from_user_id'],tweet_data['from_user_name']) 
    new_tweet(tweet_data['id'],tweet_data['text'],tweet_data['to_user_id']) 

    if tweet_data['to_user_id'] != 0: 
     new_user_follower(tweet_data['from_user_id'],tweet_data['to_user_id']) 


""""4 functions below carry out the inserts into specific column families"""   
def new_user_tweet(from_user_id,tweet_time,id): 
    ks_refs.user_tweet_cf.insert(from_user_id,{(tweet_time): id}) 

def new_user_name(from_user_id,user_name): 
    ks_refs.user_name_cf.insert(from_user_id,{'username': user_name}) 

def new_tweet(id,text,to_user_id): 
    ks_refs.tweet_cf.insert(id,{ 
    'text': text 
    ,'to_user_id': to_user_id 
    }) 

def new_user_follower(from_user_id,to_user_id): 
    ks_refs.user_follower_cf.insert(from_user_id,{to_user_id: 0}) 

    read('tweets.json') 
if __name__ == '__main__': 

這僅僅是另一個文件..

import pycassa 
from pycassa.pool import ConnectionPool 
from pycassa.columnfamily import ColumnFamily 

"""This is a static class I set up to hold the global database connection stuff, 
I only want to connect once and then the various insert functions will use these fields a lot""" 
class ks_refs(): 
    pool = ConnectionPool('TweetsKS',use_threadlocal = True,max_overflow = -1) 

    @classmethod 
    def cf_connect(cls, column_family): 
     cf = pycassa.ColumnFamily(cls.pool, column_family) 
     return cf 

ks_refs.user_name_cfo = ks_refs.cf_connect('UserName') 
ks_refs.user_tweet_cfo = ks_refs.cf_connect('UserTweet') 
ks_refs.tweet_cfo = ks_refs.cf_connect('Tweet') 
ks_refs.user_follower_cfo = ks_refs.cf_connect('UserFollower') 

#trying out a batch mutator whihc is supposed to increase performance 
ks_refs.user_name_cf = ks_refs.user_name_cfo.batch(queue_size=10000) 
ks_refs.user_tweet_cf = ks_refs.user_tweet_cfo.batch(queue_size=10000) 
ks_refs.tweet_cf = ks_refs.tweet_cfo.batch(queue_size=10000) 
ks_refs.user_follower_cf = ks_refs.user_follower_cfo.batch(queue_size=10000) 

回答

0

的一點想法:

  • 10000批次生產方式太大。試試100.
  • 使您的ConnectionPool大小至少與使用pool_size參數的線程數一樣大。默認值爲5.只有當活動線程的數量隨時間變化時纔會使用池溢出,而不是當您擁有固定數量的線程時。原因是它會導致很多不必要的新連接打開和關閉,這是一個相當昂貴的過程。

你解決了這些問題之後,看看這些:

  • 我不熟悉您使用的線程池庫。確保如果將插入到Cassandra之外,那麼在增加線程數時會看到性能提高
  • 由於GIL,Python本身對有多少線程可能有用有限制。它通常不應該超過20,但如果你正在做一些CPU密集型或者需要大量Python解釋的東西,它可能會發生。我之前提到的測試也會涉及到這一點。可能會出現這種情況,您應該考慮使用multiprocessing模塊,但您需要更改一些代碼(即不共享ConnectionPools,CF或幾乎任何其他進程之間的內容)。