我有這樣的數據:R:評估多個條件語句多次
df = as.data.frame(cbind(
event1 = c(88.76,96.04,99.60,88.76,99.60,34.04,96.04,87.03,87.44,87.44),
time1 = c(0.100,0.033,0.000,0.117,0.000,0.000,0.050,0.500,0.133,0.117),
event2 = c(NA,99.60,NA,34.04,99.62,88.76,87.44,87.41,88.76,88.76),
time2 = c(NA,0.050,NA,0.100,0.017,0.083,0.200,0.500,0.133,0.050),
event100 = c(NA,89.52,NA,34.04,93.93,34.02,88.76,88.01,88.01,87.41),
time100 = c(NA,0.050,NA,0.100,0.033,0.117,0.300,0.500,0.233,0.300),
event_88.76_within_0.1 = rep(0,10)
))
其中event1
是第一個事件的對象已經和time1
是花了多長時間event1
發生之前的代碼,每個主題都有多達100個事件和事件時間。
我正在嘗試創建一個變量(event_88.76_within_0.1
),它表示事件88.76是否在0.1分鐘內發生。所以如果任何一個主題的事件等於88.76並且事件的相應時間小於或等於0.1,它就等於1。
使用這種嵌套for
循環:
for(r in 1:nrow(df)){ #for each subject
for(c in 1:6){ #for each event
if(!is.na(df[r, c]) & df[r, c] == 88.76 & df[r,(c+1)] <= 0.1){
#if the event code is not missing and if it's the needed event code and
#the next column over (the corresponding time to event) is less than 0.1
df[r,"event_88.76_within_0.1"] = 1
}
i = i + 2 #skip 2 columns to get to next event code
}
}
我能得到這個,這是我想要的:
event1 time1 event2 time2 event100 time100 event_88.76_within_0.1
[1,] 88.76 0.100 NA NA NA NA 1
[2,] 96.04 0.033 99.60 0.050 89.52 0.050 0
[3,] 99.60 0.000 NA NA NA NA 0
[4,] 88.76 0.117 34.04 0.100 34.04 0.100 0
[5,] 99.60 0.000 99.62 0.017 93.93 0.033 0
[6,] 34.04 0.000 88.76 0.083 34.02 0.117 1
[7,] 96.04 0.050 87.44 0.200 88.76 0.300 0
[8,] 87.03 0.500 87.41 0.500 88.01 0.500 0
[9,] 87.44 0.133 88.76 0.133 88.01 0.233 0
[10,] 87.44 0.117 88.76 0.050 87.41 0.300 1
但數據集有上千個科目(每100可能發生的事件) ,所以嵌套的for
循環需要一段時間才能運行。
我想上述循環矢量化的東西是這樣的:
df$event_88.76_within_0.1 = 0
df$event_88.76_within_0.1[df[ "events that equal 88.76 and occurred within 0.1" ]]=1
但我沒有任何運氣。
任何幫助將不勝感激。
美麗!謝謝。 – JRF1111
Bah!你打敗了我;) –
@Lamia,很好的回答!一個小建議:如果條件每行保持n次,你會得到'n'而不是'1'。我建議在它周圍或者最後一個變量周圍包裝一個'ifelse',就像'ifelse(rowSums((df [,events] == 88.76)*(df [,times] <= 0.1),na.rm = T )> 0,1,0)' –