0
num_epochs = 100
total_series_length = 50000
truncated_backprop_length = 15
state_size = 4
num_classes = 2
echo_step = 3
batch_size = 5
num_batches = total_series_length//batch_size//truncated_backprop_length
genreating數據{:無法張量 '0 one_hot' 喂形狀(5,15)的值...}
batchX_placeholder = tf.placeholder(tf.int32, [batch_size, truncated_backprop_length])
batchY_placeholder = tf.placeholder(tf.int32, [batch_size, truncated_backprop_length])
#and one for the RNN state, 5,4
init_state = tf.placeholder(tf.float32, [batch_size, state_size])
batchX_placeholder = tf.one_hot(batchX_placeholder, num_classes)
inputs_series = tf.unstack(batchX_placeholder, axis=1)
cell = tf.contrib.rnn.BasicRNNCell(state_size)
rnn_outputs, final_state = tf.contrib.rnn.static_rnn(cell, inputs_series, initial_state=init_state)
一些優化代碼{....} ,然後創建一個圖
#Step 3 Training the network
with tf.Session() as sess:
#we stupidly have to do this everytime, it should just know
#that we initialized these vars. v2 guys, v2..
sess.run(tf.initialize_all_variables())
#interactive mode
plt.ion()
#initialize the figure
plt.figure()
#show the graph
plt.show()
#to show the loss decrease
loss_list = []
for epoch_idx in range(num_epochs):
#generate data at eveery epoch, batches run in epochs
x,y = generateData()
#initialize an empty hidden state
_current_state = np.zeros((batch_size, state_size))
print("New data, epoch", epoch_idx)
#each batch
for batch_idx in range(num_batches):
#starting and ending point per batch
#since weights reoccuer at every layer through time
#These layers will not be unrolled to the beginning of time,
#that would be too computationally expensive, and are therefore truncated
#at a limited number of time-steps
start_idx = batch_idx * truncated_backprop_length
end_idx = start_idx + truncated_backprop_length
batchX = x[:,start_idx:end_idx]
batchY = y[:,start_idx:end_idx]
#run the computation graph, give it the values
#we calculated earlier
_total_loss, _train_step, _final_state, _predictions_series = sess.run(
[total_loss, train_step, final_state, predictions],
feed_dict={
batchX_placeholder:batchX,
batchY_placeholder:batchY,
init_state:_current_state
})
loss_list.append(_total_loss)
if batch_idx%100 == 0:
print("Step",batch_idx, "Loss", _total_loss)
plot(loss_list, _predictions_series, batchX, batchY)
plt.ioff()
plt.show()
這個錯誤:
ValueError Traceback (most recent call last)
<ipython-input-9-7c3d1289d16b> in <module>()
40 batchX_placeholder:batchX,
41 batchY_placeholder:batchY,
---> 42 init_state:_current_state
43 })
44
/home/pranshu_44/anaconda3/lib/python3.5/site-packages/tensorflow/python/client/session.py in run(self, fetches, feed_dict, options, run_metadata)
765 try:
766 result = self._run(None, fetches, feed_dict, options_ptr,
--> 767 run_metadata_ptr)
768 if run_metadata:
769 proto_data = tf_session.TF_GetBuffer(run_metadata_ptr)
/home/pranshu_44/anaconda3/lib/python3.5/site-packages/tensorflow/python/client/session.py in _run(self, handle, fetches, feed_dict, options, run_metadata)
942 'Cannot feed value of shape %r for Tensor %r, '
943 'which has shape %r'
--> 944 % (np_val.shape, subfeed_t.name, str(subfeed_t.get_shape())))
945 if not self.graph.is_feedable(subfeed_t):
946 raise ValueError('Tensor %s may not be fed.' % subfeed_t)
ValueError: Cannot feed value of shape (5, 15) for Tensor 'one_hot:0', which has shape '(5, 15, 2)'
我看了文檔,但該做的所有 沒有幫助,如果有任何其他簡便的方法,也將是有益的
感謝的人..它的工作!這對我來說是如此的嫺熟。 –