2
我添加了一個TensorBoard可視化到我的網絡,並注意到只有外層變化很大。爲什麼網絡的權重沒有改變很多?這在覆蓋直方圖中尤其明顯。Tensorboard權重直方圖只有最後一層可見變化
我的模型
def neural_network_model(inputdata):
"""The blueprint of the network and the tensorboard information
:param inputdata: the placeholder for the inputdata
:returns: the output of the network?
"""
W1 = tf.get_variable("W1", shape=[set.input, nodes_h1],
initializer=tf.contrib.layers.xavier_initializer())
B1 = tf.get_variable("B1", shape=[nodes_h1],
initializer=tf.random_normal_initializer())
layer1 = tf.matmul(inputdata, W1)
layer1_bias = tf.add(layer1, B1)
layer1_act = tf.nn.relu(layer1)
W2 = tf.get_variable("W2", shape=[nodes_h1, nodes_h2],
initializer=tf.contrib.layers.xavier_initializer())
B2 = tf.get_variable("B2", shape=[nodes_h2],
initializer=tf.random_normal_initializer())
layer2 = tf.matmul(layer1_act, W2)
layer2_bias = tf.add(layer2, B2)
layer2_act = tf.nn.relu(layer2)
W3 = tf.get_variable("W3", shape=[nodes_h2, nodes_h3],
initializer=tf.contrib.layers.xavier_initializer())
B3 = tf.get_variable("B3", shape=[nodes_h3],
initializer=tf.random_normal_initializer())
layer3 = tf.matmul(layer2_act, W3)
layer3_bias = tf.add(layer3, B3)
layer3_act = tf.nn.relu(layer3)
WO = tf.get_variable("WO", shape=[nodes_h3, set.output],
initializer=tf.contrib.layers.xavier_initializer())
layerO = tf.matmul(layer3_act, WO)
with tf.name_scope('Layer1'):
tf.summary.histogram("weights", W1)
tf.summary.histogram("layer", layer1)
tf.summary.histogram("bias", layer1_bias)
tf.summary.histogram("activations", layer1_act)
with tf.name_scope('Layer2'):
tf.summary.histogram("weights", W2)
tf.summary.histogram("layer", layer2)
tf.summary.histogram("bias", layer2_bias)
tf.summary.histogram("activations", layer2_act)
with tf.name_scope('Layer3'):
tf.summary.histogram("weights", W3)
tf.summary.histogram("layer", layer3)
tf.summary.histogram("bias", layer3_bias)
tf.summary.histogram("activations", layer3_act)
with tf.name_scope('Output'):
tf.summary.histogram("weights", WO)
tf.summary.histogram("layer", layerO)
return layerO
我瞭解訓練過程是體重應該得到調整,這幾乎發生在圖像。然而,損失已經完成。我已經訓練了10000個時代的網絡,所以我期望整體上有更多的變化。特別是我不明白的重量變化不足。有人能詳細說明嗎?
我與我的神經網絡有類似的問題,並發現大部分的損失正在消耗的偏見。你有沒有得出任何結論? – mamafoku