0
this solution如何使用pandas/python來實現?這個問題涉及使用此stats.stackexchange solution圍繞平均值找到95%CI的實現。Python:實現平均值意味着95%置信區間?
import pandas as pd
from IPython.display import display
import scipy
import scipy.stats as st
import scikits.bootstrap as bootstraps
data = pd.DataFrame({
"exp1":[34, 41, 39]
,"exp2":[45, 51, 52]
,"exp3":[29, 31, 35]
}).T
data.loc[:,"row_mean"] = data.mean(axis=1)
data.loc[:,"row_std"] = data.std(axis=1)
display(data)
<table border="1" class="dataframe"> <thead> <tr style="text-align: right;"> <th></th> <th>0</th> <th>1</th> <th>2</th> <th>row_mean</th> <th>row_std</th> </tr> </thead> <tbody> <tr> <th>exp1</th> <td>34</td> <td>41</td> <td>39</td> <td>38.000000</td> <td>2.943920</td> </tr> <tr> <th>exp2</th> <td>45</td> <td>51</td> <td>52</td> <td>49.333333</td> <td>3.091206</td> </tr> <tr> <th>exp3</th> <td>29</td> <td>31</td> <td>35</td> <td>31.666667</td> <td>2.494438</td> </tr>
</tbody> </table>
mean_of_means = data.row_mean.mean()
std_of_means = data.row_mean.std()
confidence = 0.95
print("mean(means): {}\nstd(means):{}".format(mean_of_means,std_of_means))
- 平均值(裝置):39.66666666666667
- STD(裝置):8.950481054731702
第一不正確嘗試(zscore):
zscore = st.norm.ppf(1-(1-confidence)/2)
lower_bound = mean_of_means - (zscore*std_of_means)
upper_bound = mean_of_means + (zscore*std_of_means)
print("95% CI = [{},{}]".format(lower_bound,upper_bound))
- 95%CI = [22.1,57.2](不正確溶液)
第二不正確嘗試(tscore):
tscore = st.t.ppf(1-0.05, data.shape[0])
lower_bound = mean_of_means - (tscore*std_of_means)
upper_bound = mean_of_means + (tscore*std_of_means)
print("95% CI = [{},{}]".format(lower_bound,upper_bound))
- 95%CI = [18.60,60.73](不正確溶液)
第三不正確嘗試(自舉):
CIs = bootstraps.ci(data=data.row_mean, statfunction=scipy.mean,alpha=0.05)
- 95%CI = [31.67,49.33(不正確解決方案)
this solution如何使用pan das/python在下面得到正確的解決方案?
- 95%CI = [17.4 61.9](正確溶液)
也許'scikits-bootstrap'你想要做什麼? – xaav
@xaav,剛剛添加了一個使用這個建議的例子,很遺憾,我沒有提供正確的解決方案,儘管我可能會錯誤地使用它。我不確定alpha是否應該設置爲0.05或0.025,但無論如何,這是不正確的。 – blehman