我收到以下錯誤更大的 - 顯然,在節省我的模型Tensorflow保存模型:GraphDef不能超過2GB
Step = 1799 | Tensorflow Accuracy = 1.0
Step = 1799 | My Accuracy = 0.0363355780022
Step = 1800 | Tensorflow Accuracy = 1.0
Step = 1800 | My Accuracy = 0.0364694929089
Traceback (most recent call last):
File "CNN-LSTM-seg-reg-sigmoid.py", line 290, in <module>
saver.save(sess, save_path)
File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/training/saver.py", line 1085, in save
self.export_meta_graph(meta_graph_filename)
File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/training/saver.py", line 1103, in export_meta_graph
add_shapes=True),
File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/framework/ops.py", line 2175, in as_graph_def
result, _ = self._as_graph_def(from_version, add_shapes)
File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/framework/ops.py", line 2138, in _as_graph_def
raise ValueError("GraphDef cannot be larger than 2GB.")
ValueError: GraphDef cannot be larger than 2GB.
Here建議看出來tf.constant
S的時間,但我已經爲零常量在我的程序中。但是,我的weights
和biases
如下所示:tf.Variable(tf.random_normal([32]),name="bc1")
。這可能是一個問題嗎?
如果不是這樣,那麼比this告訴我,我在每次循環迭代後都會添加到圖中,但我不確定它發生的位置。
我的第一個猜測是我做出預測的時候。我提出通過 預測下面的代碼...
# Make prediction
im = Image.open('/home/volcart/Documents/Data/input_crops/temp data0001.tif')
batch_x = np.array(im)
batch_x = batch_x.reshape((1, n_input_x, n_input_y))
batch_x = batch_x.astype(float)
prediction = sess.run(pred, feed_dict={x: batch_x})
prediction = tf.sigmoid(prediction.reshape((n_input_x * n_input_y, n_classes)))
prediction = prediction.eval().reshape((n_input_x, n_input_y, n_classes))
我的第二個猜測是,當我通過以下計算loss
和accuracy
:loss, acc = sess.run([cost, accuracy], feed_dict={x: batch_x, y: batch_y})
我的整個會話代碼如下所示:
# Initializing the variables
init = tf.initialize_all_variables()
saver = tf.train.Saver()
gpu_options = tf.GPUOptions()
config = tf.ConfigProto(gpu_options=gpu_options)
config.gpu_options.allow_growth = True
# Launch the graph
with tf.Session(config=config) as sess:
sess.run(init)
summary = tf.train.SummaryWriter('/tmp/logdir/', sess.graph) #initialize graph for tensorboard
step = 1
# Import data
data = scroll_data.read_data('/home/volcart/Documents/Data/')
# Keep training until reach max iterations
while step * batch_size < training_iters:
batch_x, batch_y = data.train.next_batch(batch_size)
# Run optimization op (backprop)
batch_x = batch_x.reshape((batch_size, n_input_x, n_input_y))
batch_y = batch_y.reshape((batch_size, n_input_x, n_input_y))
batch_y = convert_to_2_channel(batch_y, batch_size)
sess.run(optimizer, feed_dict={x: batch_x, y: batch_y})
step = step + 1
loss, acc = sess.run([cost, accuracy], feed_dict={x: batch_x,
y: batch_y})
# Make prediction
im = Image.open('/home/volcart/Documents/Data/input_crops/temp data0001.tif')
batch_x = np.array(im)
batch_x = batch_x.reshape((1, n_input_x, n_input_y))
batch_x = batch_x.astype(float)
prediction = sess.run(pred, feed_dict={x: batch_x})
prediction = tf.sigmoid(prediction.reshape((n_input_x * n_input_y, n_classes)))
prediction = prediction.eval().reshape((n_input_x, n_input_y, n_classes))
# Temp arrays are to splice the prediction n_input_x x n_input_y x 2
# into 2 matrices n_input_x x n_input_y
temp_arr1 = np.empty((n_input_x, n_input_y))
for i in xrange(n_input_x):
for j in xrange(n_input_x):
for k in xrange(n_classes):
if k == 0:
temp_arr1[i][j] = 1 - prediction[i][j][k]
my_acc = accuracy_custom(temp_arr1,batch_y[0,:,:,0])
print "Step = " + str(step) + " | Tensorflow Accuracy = " + str(acc)
print "Step = " + str(step) + " | My Accuracy = " + str(my_acc)
if step % 100 == 0:
save_path = "/home/volcart/Documents/CNN-LSTM-reg-model/CNN-LSTM-seg-step-" + str(step) + "-model.ckpt"
saver.save(sess, save_path)
csv_file = "/home/volcart/Documents/CNN-LSTM-reg/CNNLSTMreg-step-" + str(step) + "-accuracy-" + str(my_acc) + ".csv"
np.savetxt(csv_file, temp_arr1, delimiter=",")
不會立即崩潰之前加入
tf.get_default_graph().finalize()
趕上這樣的問題呢?儘量保存在每一步。如果它在幾步之後崩潰,那麼模型會出現問題。 – fabrizioM