1
它可能是以前的帖子的重複,但這裏是我的代碼。 我的輸入X是每個長度爲10的字符序列,編碼爲1-26個數字,並添加隨機噪聲。輸出是序列中的下一個字。準確性/損失不會改變
from keras.models import Sequential
from keras.layers.core import Dense, Activation
from keras.layers.recurrent import LSTM
import keras.optimizers
in_out_neurons = 1
hidden_neurons = 20
model = Sequential()
# n_prev = 100, 2 values per x axis
model.add(LSTM(hidden_neurons, input_shape=(10, 1)))
model.add(Activation('relu'))
model.add(Dense(in_out_neurons))
model.add(Activation("sigmoid"))
model.add(Activation("softmax"))
rms = keras.optimizers.RMSprop(lr=5, rho=0.9, epsilon=1e-08, decay=0.0)
sgd = keras.optimizers.SGD(lr=0.01, momentum=0.0, decay=0.001, nesterov=False)
model.compile(loss="binary_crossentropy",
optimizer='adam',
metrics=['accuracy'])
(X_train, y_train), (X_test, y_test) = train_test_split(data)
model.fit(X_train, y_train, batch_size=100, nb_epoch=50, validation_data=(X_test, y_test), verbose=1)
score = model.evaluate(X_test, y_test, verbose=0)
print('Test score:', score[0])
print('Test accuracy:', score[1])
predicted = model.predict(X_test, batch_size=700)
# and maybe plot it
pd.DataFrame(predicted).to_csv("predicted.csv")
pd.DataFrame(y_test).to_csv("test_data.csv")
試圖改變不同的損失函數和優化器。沒有運氣。
非常感謝。 – Hima
它解決了你的問題嗎? –