2017-04-22 47 views
1

說,如果我有兩個SparseTensor S作爲如下:如何從TensorFlow的SparseTensor中選擇一行?

[[1, 0, 0, 0], 
[2, 0, 0, 0], 
[1, 2, 0, 0]] 

[[1.0, 0, 0, 0], 
[1.0, 0, 0, 0], 
[0.3, 0.7, 0, 0]] 

,我想前兩行提取了出來。我需要非零條目SparseTensor S的兩個指數和價值觀,這樣我可以將結果傳遞給tf.nn.embedding_lookup_sparse。我怎樣才能做到這一點?

我的應用程序是: 我想用字的嵌入,這是相當直截了當的TensorFlow。但是現在我想要使用稀疏嵌入,即:對於常見詞彙,它們有自己的嵌入。對於稀有詞,它們的嵌入是常見詞嵌入的稀疏線性組合。 所以我需要兩本食譜來說明稀疏嵌入是如何組成的。在前面的例子中,食譜說:對於第一個詞來說,它的嵌入由自己的嵌入組成,其重量爲1.0。第二個詞的事情是相似的。對於最後一個字,它說:此字的嵌入是前兩個單詞的嵌入物的線性組合,並且所述相應的權重分別爲0.3和0.7。 我需要提取一排,然後喂指標和權重tf.nn.embedding_lookup_sparse,以獲得最終的嵌入。我如何在TensorFlow中做到這一點?

或者我需要解決它,即:預處理我的數據和處理的菜譜出來TensorFlow的?

回答

1

我檢查了這裏的工程師誰知道更多關於這方面,和這裏的一個就是他傳給:

我不知道,如果我們有一個高效的執行這一點,但這裏是一個不使用dynamic_partition和收集操作的最佳實現。

def sparse_slice(indices, values, needed_row_ids): 
    num_rows = tf.shape(indices)[0] 
    partitions = tf.cast(tf.equal(indices[:,0], needed_row_ids), tf.int32) 
    rows_to_gather = tf.dynamic_partition(tf.range(num_rows), partitions, 2)[1] 
    slice_indices = tf.gather(indices, rows_to_gather) 
    slice_values = tf.gather(values, rows_to_gather) 
    return slice_indices, slice_values 

with tf.Session().as_default(): 
    indices = tf.constant([[0,0], [1, 0], [2, 0], [2, 1]]) 
    values = tf.constant([1.0, 1.0, 0.3, 0.7], dtype=tf.float32) 
    needed_row_ids = tf.constant([1]) 
    slice_indices, slice_values = sparse_slice(indices, values, needed_row_ids) 
    print(slice_indices.eval(), slice_values.eval()) 

更新:

工程師送去一個例子,以幫助多行過,感謝指出了這一點!

def sparse_slice(indices, values, needed_row_ids): 
    needed_row_ids = tf.reshape(needed_row_ids, [1, -1]) 
    num_rows = tf.shape(indices)[0] 
    partitions = tf.cast(tf.reduce_any(tf.equal(tf.reshape(indices[:,0], [-1, 1]), needed_row_ids), 1), tf.int32) 
    rows_to_gather = tf.dynamic_partition(tf.range(num_rows), partitions, 2)[1] 
    slice_indices = tf.gather(indices, rows_to_gather) 
    slice_values = tf.gather(values, rows_to_gather) 
    return slice_indices, slice_values 

with tf.Session().as_default(): 
    indices = tf.constant([[0,0], [1, 0], [2, 0], [2, 1]]) 
    values = tf.constant([1.0, 1.0, 0.3, 0.7], dtype=tf.float32) 
    needed_row_ids = tf.constant([0, 2]) 
+0

哦,我明白了。它使用了dynamic_partition和gather的巧妙結合。這個想法是,不要形成一個SparseTensor。相反,只需在密集的'indices'和'values'數組上執行'dynamic_partition'和'gather'即可。 – soloice

+0

這有助於很多!順便說一句,這段代碼似乎只適用於單行。我如何提取多行(即使有重複)?說,如果我想提取第一,第三和第三排?也就是說,在輸入句子中,可能會出現多次出現的單詞。我知道我可以運行'sparse_slice'幾次,使用'tf.concat'將它們串聯起來,但有沒有更好的辦法? – soloice

+0

最後我明白了。我可以對密集的'indices'和'values'進行類似的分區。我明天會發佈一個解決方案,它大量使用'tf.gather'。 – soloice

0

粗略地說,一個需要從密集indicesweights陣列,而不是直接做到這一點上tf.SparseTensor收集正確的價值觀。我將在下面發佈我的代碼,它假設索引描述的是同一行是連續的,因此可以使用開始索引和結束索引來標識。

# Suppose we have the following cookbook: 
# The first 3 rows are one-hot basis and these words have their own embeddings 
# The last 2 rows corresponds to rare words and their embeddings are linear combinations of common words. 
# Thus basis coefficients and weights are: 

# indices: 
#[[0, x, x] 
# [1, x, x] 
# [2, x, x] 
# [1, 2, x] 
# [0, 2, x]] 

# weights: 
#[[1.0, x, x] 
# [1.0, x, x] 
# [1.0, x, x] 
# [0.1, 0.9, x] 
# [0.7, 0.3, x]] 

# embedding basis (for word 0, word 1 and word 2 respectively): 
#[[1, 2, 3, 4, 5] 
# [6, 7, 8, 9, 10] 
# [11, 12, 13, 14, 15]] 

# Which implies, the embeddings for word 3 and word 4 are: 
# [6, 7, 8, 9, 10] * 0.1 + [11, 12, 13, 14, 15] * 0.9 = [ 10.5, 11.5, 12.5, 13.5, 14.5] 
# [1, 2, 3, 4, 5] * 0.7 + [11, 12, 13, 14, 15] * 0.3 = [ 4., 5., 6., 7., 8.] 


X = tf.constant(np.array(list(range(1, 16))).reshape((3, 5)), dtype=tf.float32) 

# For word i, its index range in sp_weights_vals and sp_ids_val is 
# [start_index_in_sp_indices[i], end_index_in_sp_indices[i]) 
# index_range_in_sp_indices[i] is the index range of word i 
# e.g.: For word 3, the relevant params are the 3rd and 4th ones (i.e.: interval [3, 5], including 3 and excluding 5) 
# Equivalent to [[0, 0], [1, 0], [2, 0], [3, 0], [3, 1], [4, 0], [4, 1]] 
start_index_in_sp_indices = [0, 1, 2, 3, 5] 
end_index_in_sp_indices = [1, 2, 3, 5, 7] 

word_ids_in_sentence = tf.placeholder(shape=[6], dtype=tf.int32) 
sp_shape = tf.placeholder(tf.int64) # mini-batch size * sparsity 


# Gather proper indices 
start_indices_in_sentence = tf.gather(start_index_in_sp_indices, word_ids_in_sentence) 
end_indices_in_sentence = tf.gather(end_index_in_sp_indices, word_ids_in_sentence) 
print(sess.run(start_indices_in_sentence, feed_dict={word_ids_in_sentence: [1, 3, 2, 1, 4, 3]})) 
print(sess.run(end_indices_in_sentence, feed_dict={word_ids_in_sentence: [1, 3, 2, 1, 4, 3]})) 


# Not supported due to complicated shape 
# elems = (start_indices_in_sentence, end_indices_in_sentence) 
# word_embedding_indices = tf.foldl(lambda a, x: tf.concat(a, tf.range(x[0], x[1])), elems, initializer=[]) 

print("*" * 50) 
indices_to_gather = [] 
sp_indices_to_feed = [] 
for i in range(6): 
    indices_to_gather.append(tf.range(start_indices_in_sentence[i], end_indices_in_sentence[i])) 
    sp_indices_to_feed.append(tf.stack(tf.map_fn(lambda x: (i, x), 
               tf.range(end_indices_in_sentence[i] - start_indices_in_sentence[i]), 
               dtype=(tf.int32, tf.int32)), 
            axis=1)) 

print("check indices to gather") 
print(sess.run(indices_to_gather, feed_dict={word_ids_in_sentence: [1, 3, 2, 1, 4, 3]})) 
indices_to_gather = tf.concat(indices_to_gather, axis=0) 
print(sess.run(indices_to_gather, feed_dict={word_ids_in_sentence: [1, 3, 2, 1, 4, 3]})) 

print("check indices to feed") 
print(sess.run(sp_indices_to_feed, feed_dict={word_ids_in_sentence: [1, 3, 2, 1, 4, 3]})) 
sp_indices_to_feed = tf.to_int64(tf.concat(sp_indices_to_feed, axis=0)) 
print(sess.run(sp_indices_to_feed, feed_dict={word_ids_in_sentence: [1, 3, 2, 1, 4, 3]})) 

# sp_indices_table = [[0, 0], [1, 0], [2, 0], [3, 0], [3, 1], [4, 0], [4, 1]] 
sp_ids_val_table = tf.constant(np.array([0, 1, 2, 1, 2, 0, 2], dtype=np.int32)) 
sp_weights_val_table = tf.constant(np.array([1.0, 1.0, 1.0, 0.1, 0.9, 0.7, 0.3], dtype=np.float32)) 


sp_ids_val_to_feed = tf.gather(sp_ids_val_table, indices_to_gather) 
sp_weights_val_to_feed = tf.gather(sp_weights_val_table, indices_to_gather) 



print(sess.run([sp_indices_to_feed], feed_dict={word_ids_in_sentence: [1, 3, 2, 1, 4, 3]})) 
print(sess.run([sp_ids_val_to_feed], feed_dict={word_ids_in_sentence: [1, 3, 2, 1, 4, 3]})) 
print(sess.run([sp_weights_val_to_feed], feed_dict={word_ids_in_sentence: [1, 3, 2, 1, 4, 3]})) 


sp_ids = tf.SparseTensor(sp_indices_to_feed, sp_ids_val_to_feed, sp_shape) 
sp_weights = tf.SparseTensor(sp_indices_to_feed, sp_weights_val_to_feed, sp_shape) 
y = tf.nn.embedding_lookup_sparse(X, sp_ids, sp_weights, combiner="sum") 


word_embedding_indices = tf.concat(indices_to_gather, axis=0) 
print(sess.run(word_embedding_indices, feed_dict={word_ids_in_sentence: [1, 3, 2, 1, 4, 3]})) 
print("*" * 50) 

word_embeddings = sess.run(y, feed_dict={ 
    word_ids_in_sentence: [1, 3, 2, 1, 4, 3], 
    sp_shape: [6, 3]}) 
print(word_embeddings) 
相關問題