2017-07-24 45 views
0

我試圖使TFRecord包含圖像字節,高度,寬度,sparseTensor_labels(指數,值和形狀),以下是代碼: ##如何寫sparsetensor到tfrecords

def _bytes_feature(value): 
    return tf.train.Feature(bytes_list=tf.train.BytesList(value=[value])) 

def _int64_feature(value): 
    return tf.train.Feature(int64_list=tf.train.Int64List(value=[value])) 
def _float_feature(value): 
    return tf.train.Feature(float_list=tf.train.FloatList(value=value)) 

tfrecords_filename = 'my_dataset.tfrecords' 

writer = tf.python_io.TFRecordWriter(tfrecords_filename) 

for img, label in zip(image_list, label_list): 
    try: 
     im=np.array(Image.open(img[0])) 

     im_height , im_width = im.shape 
    except IOError: 
     print("Image not read successfully: ", img[0]) 

    img_raw = im.tostring() 
    indices = [i for i in range(0,len(label[0]))] 
    values_ctc = [char_to_ix[i] for i in list(label[0])] 
    shape_ctc = [len(label[0])] 
    example = tf.train.Example(features=tf.train.Features(feature={ 
     'height': _int64_feature(im_height), 
     'width': _int64_feature(im_width), 
     'image_raw': _bytes_feature(img_raw), 
     'mask_raw': _bytes_feature(tf.compat.as_bytes(label[0])), 
     'indices' : tf.train.Feature(int64_list=tf.train.Int64List(value= indices)), 
     'value' : tf.train.Feature(float_list=tf.train.FloatList(value= values_ctc)), 
     'shape_ctc': tf.train.Feature(int64_list=tf.train.Int64List(value= shape_ctc)) 
    })) 

    writer.write(example.SerializeToString()) 
#print(example) 
writer.close() 

下一頁我讀的是一樣的: 但不知道如何讀取sparselabels? 以下是我在做什麼: ## 讀卡器= tf.TFRecordReader()

_, serialized_example = reader.read(filename_queue) 
serialized_example=tf.reshape(serialized_example, shape=[]) 
features = tf.parse_single_example(
    serialized_example, 
    # Defaults are not specified since both keys are required. 
    features={ 
    'height': parsing_ops.FixedLenFeature([], tf.int64), 
    'width': parsing_ops.FixedLenFeature([], tf.int64), 
    'image_raw': parsing_ops.FixedLenFeature([],dtype= tf.string), 
    'mask_raw': parsing_ops.FixedLenFeature([],dtype=tf.string), 
    ?? 
     }) 

回答

相關問題