2017-03-07 149 views
1

我希望在我的GPU上運行我的tensorflow代碼的訓練階段,而在完成並存儲結果以加載我創建的模型並在CPU上運行其測試階段。Tensorflow:在GPU上運行訓練階段並在CPU上測試階段

我已經創建了這個代碼(我已經把它的一部分,僅供參考,因爲它是巨大的,否則,我知道規則將包括一個功能完整的代碼,我很抱歉)。

import pandas as pd 
import matplotlib.pyplot as plt 
import numpy as np 
import tensorflow as tf 
from tensorflow.contrib.rnn.python.ops import rnn_cell, rnn 

# Import MNIST data http://yann.lecun.com/exdb/mnist/ 
from tensorflow.examples.tutorials.mnist import input_data 
mnist = input_data.read_data_sets("MNIST_data/", one_hot=True) 
x_train = mnist.train.images 
# Check that the dataset contains 55,000 rows and 784 columns 
N,D = x_train.shape 

tf.reset_default_graph() 
sess = tf.InteractiveSession() 

x = tf.placeholder("float", [None, n_steps,n_input]) 
y_true = tf.placeholder("float", [None, n_classes]) 
keep_prob = tf.placeholder(tf.float32,shape=[]) 
learning_rate = tf.placeholder(tf.float32,shape=[]) 

#[............Build the RNN graph model.............] 

sess.run(tf.global_variables_initializer()) 
# Because I am using my GPU for the training, I avoid allocating the whole 
# mnist.validation set because of memory error, so I gragment it to 
# small batches (100) 
x_validation_bin, y_validation_bin = mnist.validation.next_batch(batch_size) 
x_validation_bin = binarize(x_validation_bin, threshold=0.1) 
x_validation_bin = x_validation_bin.reshape((-1,n_steps,n_input)) 

for k in range(epochs): 

    steps = 0 

    for i in range(training_iters): 
     #Stochastic descent 
     batch_x, batch_y = mnist.train.next_batch(batch_size) 
     batch_x = binarize(batch_x, threshold=0.1) 
     batch_x = batch_x.reshape((-1,n_steps,n_input)) 
     sess.run(train_step, feed_dict={x: batch_x, y_true: batch_y,keep_prob: keep_prob,eta:learning_rate}) 

     if do_report_err == 1: 
      if steps % display_step == 0: 
       # Calculate batch accuracy 
       acc = sess.run(accuracy, feed_dict={x: batch_x, y_true: batch_y,keep_prob: 1.0}) 
       # Calculate batch loss 
       loss = sess.run(total_loss, feed_dict={x: batch_x, y_true: batch_y,keep_prob: 1.0}) 
       print("Iter " + str(i) + ", Minibatch Loss= " + "{:.6f}".format(loss) + ", Training Accuracy = " + "{:.5f}".format(acc)) 
     steps += 1 




    # Validation Accuracy and Cost 
    validation_accuracy = sess.run(accuracy,feed_dict={x:x_validation_bin, y_true:y_validation_bin, keep_prob:1.0}) 
    validation_cost = sess.run(total_loss,feed_dict={x:x_validation_bin, y_true:y_validation_bin, keep_prob:1.0}) 

    validation_loss_array.append(final_validation_cost) 
    validation_accuracy_array.append(final_validation_accuracy) 
    saver.save(sess, savefilename) 
    total_epochs = total_epochs + 1 

    np.savez(datasavefilename,epochs_saved = total_epochs,learning_rate_saved = learning_rate,keep_prob_saved = best_keep_prob, validation_loss_array_saved = validation_loss_array,validation_accuracy_array_saved = validation_accuracy_array,modelsavefilename = savefilename) 

在那之後,我的模型已經成功培訓並保存相關數據,所以我希望加載該文件,並做模型的最終訓練和測試的一部分,但用我的CPU這一次。原因是GPU無法處理mnist.train.images和mnist.train.labels的整個數據集。

所以,我手動選擇這個部分,我運行它:

with tf.device('/cpu:0'): 
# Initialise variables 
    sess.run(tf.global_variables_initializer()) 

    # Accuracy and Cost 
    saver.restore(sess, savefilename) 
    x_train_bin = binarize(mnist.train.images, threshold=0.1) 
    x_train_bin = x_train_bin.reshape((-1,n_steps,n_input)) 
    final_train_accuracy = sess.run(accuracy,feed_dict={x:x_train_bin, y_true:mnist.train.labels, keep_prob:1.0}) 
    final_train_cost = sess.run(total_loss,feed_dict={x:x_train_bin, y_true:mnist.train.labels, keep_prob:1.0}) 

    x_test_bin = binarize(mnist.test.images, threshold=0.1) 
    x_test_bin = x_test_bin.reshape((-1,n_steps,n_input)) 
    final_test_accuracy = sess.run(accuracy,feed_dict={x:x_test_bin, y_true:mnist.test.labels, keep_prob:1.0}) 
    final_test_cost = sess.run(total_loss,feed_dict={x:x_test_bin, y_true:mnist.test.labels, keep_prob:1.0}) 

,但我得到的OMM GPU內存錯誤,它沒有任何意義,我因爲我覺得我已經迫使程序依靠CPU。我沒有在第一個(批量培訓)代碼中使用sess.close()命令,但我不確定這是否是它背後的原因。我跟着這個帖子實際上for the CPU 任何建議如何運行CPU上的最後一部分?

回答

2

with tf.device()陳述僅適用於圖形構建,而不是執行,因此在設備塊內部執行sess.run等同於根本沒有設備。

要做你想做的事你需要建立單獨的訓練和測試圖,它們共享變量。

相關問題