1
我試圖做邊緣檢測在下面的代碼邊緣檢測:應用圖像陣列
lfw_people = fetch_lfw_people(min_faces_per_person=70, resize=0.4)
# introspect the images arrays to find the shapes (for plotting)
n_samples, h, w = lfw_people.images.shape
# for machine learning we use the 2 data directly (as relative pixel
# positions info is ignored by this model)
X = lfw_people.data
n_features = X.shape[1]
# the label to predict is the id of the person
y = lfw_people.target
target_names = lfw_people.target_names
n_classes = target_names.shape[0]
print("Total dataset size:")
print("n_samples: %d" % n_samples)
print("n_features: %d" % n_features)
print("n_classes: %d" % n_classes)
###############################################################################
# Split into a training set and a test set using a stratified k fold
# split into a training and testing set
X_train, X_test, y_train, y_test = train_test_split(
X, y, test_size=0.25)
我想使用的邊緣檢測索貝爾,但按我的知識索貝爾在1個圖像中。我如何將它應用於多個圖像或圖像陣列?
如何使用sobel邊緣檢測預處理圖像陣列。在上面的代碼中:'X'我們存儲所有圖像,我如何在X上應用sobel,因爲它包含多個圖像。 – gautam