2012-04-25 53 views

回答

1
Sets and Sparse Matrices

,23頁:

在OpenCV的稀疏矩陣使用CVSET用於存儲元件。

CvSparseMat* get_color_map(const IplImage* img) 
{ 
    int dims[] = { 256, 256, 256 }; 
    CvSparseMat* cmap = cvCreateSparseMat(3, dims, CV_32SC1); 
    for(int i = 0; i < img->height; i++) for(int j = 0; j < img->width; j++) 
    { 
    uchar* ptr=&CV_IMAGE_ELEM(img,uchar,i,j*3); 
    int idx[] = {ptr[0],ptr[1],ptr[2]}; 
    ((int*)cvPtrND(cmap,idx))[0]++; 
    } 

    // print the map 
    CvSparseMatIterator it; 
    for(CvSparseNode *node = cvInitSparseMatIterator(mat, &iterator); 
     node != 0; node = cvGetNextSparseNode(&iterator)) 
    { 
    int* idx = CV_NODE_IDX(cmap,node); 
    int count=*(int*)CV_NODE_VAL(cmap,idx); 
    printf(「(b=%d,g=%d,r=%d): %d\n」, idx[0], idx[1], idx[2], count); 
    } 

    return cmap; 
} 
6

使用C++接口可能更合適。請注意,文檔[1]中的示例代碼缺少模運算,因此失敗。

const int dims = 2; 
int size[] = {3, 20}; // rows and columns if in two dimensions 
SparseMat sparse_mat(dims, size, CV_32F); 
for(int i = 0; i < 1000; i++) { 
    // create a random index in dims dimensions 
    int idx[dims]; 
    for(int k = 0; k < dims; k++) 
     idx[k] = rand() % size[k]; 

    sparse_mat.ref<float>(idx) += 1.f; 
} 

cout << "bottom right element @ (2,19) = " << sparse_mat.ref<float>(2,19) << "\n"; 

Mat dense; 
sparse_mat.convertTo(dense, CV_32F); 
cout << dense; 

給出以下輸出

bottom right element @ (2,19) = 19 
[9, 23, 13, 26, 18, 13, 18, 15, 13, 17, 13, 18, 19, 6, 20, 20, 12, 15, 15, 15; 
17, 17, 14, 16, 12, 14, 17, 15, 15, 18, 24, 18, 13, 22, 18, 11, 18, 22, 17, 15; 
19, 16, 14, 10, 18, 19, 10, 17, 18, 15, 24, 22, 18, 18, 18, 23, 21, 16, 14, 19] 

[1]的OpenCV參考手冊。版本2.4.3。 2012,p。 46.