0

我最近開始使用tensorflow,這就像我的第二段代碼,我在設計這個神經網絡時被卡住了。我無法增加批量,這個問題一直存在。IndexError:數組索引太多

import numpy as np 
import pandas as pd 
import tensorflow as tf 
import math 

#importing the data and preprocessing it 

dataset = pd.read_csv('C:\\Users\\Geeks_Sid\\Documents\\Deep-Learning-A-Z\Deep Learning A-Z\\Volume 1 - Supervised Deep Learning\\Part 1 - Artificial Neural Networks (ANN)\\Section 4 - Building an ANN\\Artificial_Neural_Networks\\Churn_Modelling.csv') 
X = dataset.iloc[:, 3:13].values 
y = dataset.iloc[:, 13].values 

from sklearn.preprocessing import LabelEncoder, OneHotEncoder 
labelencoder_X_1 = LabelEncoder() 
X[:, 1] = labelencoder_X_1.fit_transform(X[:, 1]) 
labelencoder_X_2 = LabelEncoder() 
X[:, 2] = labelencoder_X_2.fit_transform(X[:, 2]) 
onehotencoder = OneHotEncoder(categorical_features = [1]) 
X = onehotencoder.fit_transform(X).toarray() 

#creating a train test split 
from sklearn.model_selection import train_test_split 
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.2, random_state = 0) 


# Feature Scaling 
from sklearn.preprocessing import StandardScaler 
sc = StandardScaler() 
X_train = sc.fit_transform(X_train) 
X_test = sc.transform(X_test) 


# Creating layers for Neural network 

n_nodes_hl1 = 1000 
n_nodes_hl2 = 1000 
n_nodes_hl3 = 1000 
n_classes = 1 
batch_size = 50 
x = tf.placeholder('float', [None, 11]) 
y = tf.placeholder('float') 

def neural_network_model(data): 
    hidden_1_layer = {'weights':tf.Variable(tf.random_normal([11, n_nodes_hl1])), 
         'biases':tf.Variable(tf.random_normal([n_nodes_hl1]))} 

    hidden_2_layer = {'weights':tf.Variable(tf.random_normal([n_nodes_hl1, n_nodes_hl2])), 
         'biases':tf.Variable(tf.random_normal([n_nodes_hl2]))} 

    hidden_3_layer = {'weights':tf.Variable(tf.random_normal([n_nodes_hl2, n_nodes_hl3])), 
         'biases':tf.Variable(tf.random_normal([n_nodes_hl3]))} 

    output_layer = {'weights':tf.Variable(tf.random_normal([n_nodes_hl3, n_classes])), 
        'biases':tf.Variable(tf.random_normal([n_classes])),} 


    l1 = tf.add(tf.matmul(data,hidden_1_layer['weights']), hidden_1_layer['biases']) 
    l1 = tf.nn.relu(l1) 

    l2 = tf.add(tf.matmul(l1,hidden_2_layer['weights']), hidden_2_layer['biases']) 
    l2 = tf.nn.relu(l2) 

    l3 = tf.add(tf.matmul(l2,hidden_3_layer['weights']), hidden_3_layer['biases']) 
    l3 = tf.nn.relu(l3) 

    output = tf.matmul(l3,output_layer['weights']) + output_layer['biases'] 
    print("I was in neural netowrk m") 
    return output 

def train_neural_network(x): 
    prediction = neural_network_model(x) 
    # OLD VERSION: 
    #cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(prediction,y)) 
    # NEW: 
    cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=prediction, labels=y)) 
    optimizer = tf.train.AdamOptimizer().minimize(cost) 

    hm_epochs = 10 
    config = tf.ConfigProto() 
    config.gpu_options.allow_growth = True 
    with tf.Session(config=config) as sess: 
     # OLD: 
     for epoch in range(hm_epochs): 
      epoch_loss = 0 
      current = 0 
      for _ in range(80): 
       currentprev = current 
       current += 100 
       epoch_x, epoch_y = tuple(X_train[:,currentprev:current]) ,tuple(y_train[:,currentprev:current]) 
       _, c = sess.run([optimizer, cost], feed_dict={x: epoch_x, y: epoch_y}) 
       epoch_loss += c 
      print('Epoch', epoch, 'completed out of',hm_epochs,'loss:',epoch_loss) 
     correct = tf.equal(tf.argmax(prediction, 1), tf.argmax(y, 1)) 

     accuracy = tf.reduce_mean(tf.cast(correct, 'float')) 
     print('Accuracy:',accuracy.eval({x:X_test, y:y_test})) 

     #sess.run(tf.initialize_all_variables()) 
     # NEW: 
     sess.run(tf.global_variables_initializer()) 

     correct = tf.equal(tf.argmax(prediction, 1), tf.argmax(y, 1)) 



train_neural_network(x) 

我正在處理看起來像這樣的錯誤。

train_neural_network(x) 
I was in neural netowrk m 
Traceback (most recent call last): 

    File "<ipython-input-8-7c7cbdae9b34>", line 1, in <module> 
    train_neural_network(x) 

    File "<ipython-input-7-b7e263fe7976>", line 20, in train_neural_network 
    epoch_x, epoch_y = tuple(X_train[:,currentprev:current]) ,tuple(y_train[:,currentprev:current]) 

IndexError: too many indices for array 

我正在嘗試複製張量流MNIST數據集分類的代碼,他們在這裏使用下面這段代碼。我希望你能夠將這些代碼與我的代碼進行比較。如果有任何修改,請幫我

def train_neural_network(x): 
    prediction = neural_network_model(x) 
    # OLD VERSION: 
    #cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(prediction,y)) 
    # NEW: 
    cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=prediction, labels=y)) 
    optimizer = tf.train.AdamOptimizer().minimize(cost) 

    hm_epochs = 10 
    config = tf.ConfigProto() 
    config.gpu_options.allow_growth = True 
    with tf.Session(config=config) as sess: 
     # OLD: 
     #sess.run(tf.initialize_all_variables()) 
     # NEW: 
     sess.run(tf.global_variables_initializer()) 

     for epoch in range(hm_epochs): 
      epoch_loss = 0 
      for _ in range(int(mnist.train.num_examples/batch_size)): 
       epoch_x, epoch_y = mnist.train.next_batch(batch_size) 
       _, c = sess.run([optimizer, cost], feed_dict={x: epoch_x, y: epoch_y}) 
       epoch_loss += c 

      print('Epoch', epoch, 'completed out of',hm_epochs,'loss:',epoch_loss) 

     correct = tf.equal(tf.argmax(prediction, 1), tf.argmax(y, 1)) 

     accuracy = tf.reduce_mean(tf.cast(correct, 'float')) 
     print('Accuracy:',accuracy.eval({x:mnist.test.images, y:mnist.test.labels})) 

正如你看到的,我的代碼是非常相似的一個MNIST但我不能夠返回一個特定的元組是在這段代碼。

epoch_x, epoch_y = mnist.train.next_batch(batch_size) 
       _, c = sess.run([optimizer, cost], feed_dict={x: epoch_x, y: epoch_y}) 

在此先感謝。如果你覺得這個問題是重複的,我想解釋一下,我找不到其他相關的東西。

+0

」這是我的第二塊代碼,我堅持做一個神經網絡「耶穌隊友... –

+0

我會'打印'你想索引的張量來獲得它的靜態形狀信息。基於這個錯誤,它聽起來像是一個標量或矢量。 –

+0

我試過了,但沒用。 epoch_x和epoch_y期待別的東西。 – BlackSpecter

回答

1

我不很瞭解你正在執行對數據的重塑,也不是它的原始格式,但這裏y = dataset.iloc[:, 13].values似乎y是一維數組,而這裏tuple(y_train[:,currentprev:current]你像一個二維矩陣訪問它並且錯誤告訴你,你正在使用太多(2)索引來索引一維數組。 「

相關問題