這個張量流代碼沒有響應,我找不出原因。請幫忙!Tensorflow以無限循環結束
import tensorflow as tf
#reading the file
with tf.name_scope ('File_reading') as scope:
filename_queue = tf.train.string_input_producer(["forestfires.csv.digested"])
reader = tf.TextLineReader()
key, value = reader.read(filename_queue)
record_defaults = [[1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [0.0]]
#13 decoded
col1, col2, col3, col4, col5, col6, col7, col8, col9, col10, col11, col12, col13 = tf.decode_csv(
value, record_defaults=record_defaults)
#12 is feture, and the 13th is the training data
features = tf.stack([col1, col2, col3, col4, col5, col6, col7, col8, col9, col10, col11, col12],name='data_input')
with tf.Session() as sess:
# Start populating the filename queue.
coord = tf.train.Coordinator()
threads = tf.train.start_queue_runners(coord=coord)
for i in range(517):
# Retrieve a single instance:
example, label = sess.run([features, col13])
coord.request_stop()
coord.join(threads)
with tf.name_scope ('network') as scope:
W1=tf.Variable(tf.zeros([12, 8]), name='W1')
b1=tf.Variable(tf.zeros([8]), name="b1")
h1=tf.add(tf.matmul(tf.expand_dims(features,0), W1),b1, name='hidden_layer')
W2=tf.Variable(tf.zeros([8, 1]), name='W2')
b2=tf.Variable(tf.zeros([1]), name="b2")
output=tf.add(tf.matmul(h1, W2),b2, name='output_layer')
error=tf.add(output,-col13, name='error')
#training
train_step = tf.train.AdamOptimizer(1e-4).minimize(error)
#graphing the output
file_writer = tf.summary.FileWriter('some directory', sess.graph)
with tf.Session() as sess:
#init
tf.global_variables_initializer().run()
print ("\n\n\n\n\n\nTRAINING STARTED\n\n\n\n\n\n")
print('test1')
sess.run(error) #this statement causes an infinite loop
print ('test2')
file_writer.close()
該代碼運行並打印'test1',但它什麼都不做,甚至沒有響應ctrl + c。我試圖查找問題,但是我的谷歌技能不夠好,或者它不在互聯網上。 system:win10 geforce 960M python 3.5.2