儘管切線,使用tidyr
功能的初步建議是,你需要去。這個功能管道似乎根據你提供的內容來完成這項工作。
您的數據:
df <- data.frame(treatment=rep(letters[1:2],10),
c1_x=rnorm(20), c2_y=rnorm(20), c3_z=rnorm(20),
c4_x=rnorm(20), c5_y=rnorm(20), c6_z=rnorm(20),
c7_x=rnorm(20), c8_y=rnorm(20), c9_z=rnorm(20),
c10_x=rnorm(20), c11_y=rnorm(20), c12_z=rnorm(20),
c_n=rnorm(20))
library(dplyr)
library(tidyr)
這第一輔助data.frame用於您c#_[xyz]
變量轉換成一個統一的一個。我相信還有其他方法可以解決這個問題,但它的工作原理相對容易,可以根據您的200多列重現和擴展。
variableTransform <- data_frame(
cnum = paste0("c", 1:12),
cvar = rep(paste0("a", 1:4), each = 3)
)
head(variableTransform)
# Source: local data frame [6 x 2]
# cnum cvar
# <chr> <chr>
# 1 c1 a1
# 2 c2 a1
# 3 c3 a1
# 4 c4 a2
# 5 c5 a2
# 6 c6 a2
這是一次性管道。我會在一秒內解釋步驟。您要查找的內容可能是treatment
,xyz
和ans
列的組合。
df %>%
tidyr::gather(cnum, value, -treatment, -c_n) %>%
tidyr::separate(cnum, c("cnum", "xyz"), sep = "_") %>%
left_join(variableTransform, by = "cnum") %>%
select(-cnum) %>%
tidyr::spread(cvar, value) %>%
mutate(
ans = a1 * (a2/c_n) + a3 * (a4/c_n)
) %>%
head
# treatment c_n xyz a1 a2 a3 a4 ans
# 1 a -1.535934 x -0.3276474 1.45959746 -1.2650369 1.02795419 1.15801448
# 2 a -1.535934 y -1.3662388 -0.05668467 0.4867865 -0.10138979 -0.01828831
# 3 a -1.535934 z -2.5026018 -0.99797169 0.5181513 1.20321878 -2.03197283
# 4 a -1.363584 x -0.9742016 -0.12650863 1.3612361 -0.24840493 0.15759418
# 5 a -1.363584 y -0.9795871 1.52027017 0.5510857 1.08733839 0.65270681
# 6 a -1.363584 z 0.2985557 -0.22883439 0.1536078 -0.09993095 0.06136036
首先,我們把原始數據和關閉所有(除二)列到「列名」和「列值」對兩列:
df %>%
tidyr::gather(cnum, value, -treatment, -c_n) %>%
# treatment c_n cnum value
# 1 a 0.20745647 c1_x -0.1250222
# 2 b 0.01015871 c1_x -0.4585088
# 3 a 1.65671028 c1_x -0.2455927
# 4 b -0.24037137 c1_x 0.6219516
# 5 a -1.16092349 c1_x -0.3716138
# 6 b 1.61191700 c1_x 1.7605452
這將有助於分裂c1_x
到c1
和x
爲了平移第一和維持後者:
tidyr::separate(cnum, c("cnum", "xyz"), sep = "_") %>%
# treatment c_n cnum xyz value
# 1 a 0.20745647 c1 x -0.1250222
# 2 b 0.01015871 c1 x -0.4585088
# 3 a 1.65671028 c1 x -0.2455927
# 4 b -0.24037137 c1 x 0.6219516
# 5 a -1.16092349 c1 x -0.3716138
# 6 b 1.61191700 c1 x 1.7605452
從這裏,讓我們來翻譯c1
,c2
,並c3
變量引入a1
(重複其他9個變量)使用variableTransform
:
left_join(variableTransform, by = "cnum") %>%
select(-cnum) %>%
# treatment c_n xyz value cvar
# 1 a 0.20745647 x -0.1250222 a1
# 2 b 0.01015871 x -0.4585088 a1
# 3 a 1.65671028 x -0.2455927 a1
# 4 b -0.24037137 x 0.6219516 a1
# 5 a -1.16092349 x -0.3716138 a1
# 6 b 1.61191700 x 1.7605452 a1
由於我們要同時處理多個變量(用一個簡單的mutate
),我們需要將一些變量回到列。 (我們之所以gather
版和現在將spread
幫助我保持組織的事情,並命名爲好。我相信有人能想出另一種方式來做到這一點。)
tidyr::spread(cvar, value) %>% head
# treatment c_n xyz a1 a2 a3 a4
# 1 a -1.535934 x -0.3276474 1.45959746 -1.2650369 1.02795419
# 2 a -1.535934 y -1.3662388 -0.05668467 0.4867865 -0.10138979
# 3 a -1.535934 z -2.5026018 -0.99797169 0.5181513 1.20321878
# 4 a -1.363584 x -0.9742016 -0.12650863 1.3612361 -0.24840493
# 5 a -1.363584 y -0.9795871 1.52027017 0.5510857 1.08733839
# 6 a -1.363584 z 0.2985557 -0.22883439 0.1536078 -0.09993095
從這裏,我們只需要mutate
以獲得正確的答案。
「做下列事情」非常模糊,需要讀者跋涉通過你的代碼,你知道。你可以用文字來形容它。 – Frank
你應該融化,以便你可以對'x','y','z'組進行分組操作。(實際上,從你的例子來看,它可能是熔化後的直線列算術。) – Gregor
同意@Gregor;你也可以'tidyr :: gather()'(hadleyverse 2)而不是'reshape2:melt()'ing(hadleyverse 1) –