1
我知道我可以使用argmin
和unravel_index
來查找ndarray中最小值的索引,但是如果我想查找最小非零元素或最小元素不是NaN,該怎麼辦?Conditional nd argmin:如何找到多維數組子集的最小值的座標?
我知道我可以使用argmin
和unravel_index
來查找ndarray中最小值的索引,但是如果我想查找最小非零元素或最小元素不是NaN,該怎麼辦?Conditional nd argmin:如何找到多維數組子集的最小值的座標?
這裏有一個方法使用扁平指數 -
def flatnonzero_based(a,condition): # condition = a!= or ~np.isnan(a)
idx = np.flatnonzero(condition)
return np.unravel_index(idx[np.take(a, idx).argmin()], a.shape)
標杆
方法 -
def flatnonzero_based(a,condition): # Proposed soln
idx = np.flatnonzero(condition)
return np.unravel_index(idx[np.take(a, idx).argmin()], a.shape)
def where_based(a, condition): # @Paul Panzer's soln
nz = np.where(condition)
return np.array(nz)[:, np.argmin(a[nz])]
時序和驗證 -
In [233]: a = np.random.rand(40,50,30)
In [234]: nan_idx = np.random.choice(range(a.size), size = a.size//100, replace=0)
In [235]: a.ravel()[nan_idx] = np.nan
In [236]: condition = ~np.isnan(a)
In [237]: where_based(a, condition)
Out[237]: array([16, 10, 8])
In [238]: flatnonzero_based(a, condition)
Out[238]: (16, 10, 8)
In [239]: %timeit where_based(a, condition)
1000 loops, best of 3: 877 µs per loop
In [240]: %timeit flatnonzero_based(a, condition)
10000 loops, best of 3: 143 µs per loop
隨着4D
數據 -
In [255]: a = np.random.rand(40,50,30,30)
In [256]: nan_idx = np.random.choice(range(a.size), size = a.size//100, replace=0)
In [257]: a.ravel()[nan_idx] = np.nan
In [258]: condition = ~np.isnan(a)
In [259]: where_based(a, condition)
Out[259]: array([34, 14, 5, 10])
In [260]: flatnonzero_based(a, condition)
Out[260]: (34, 14, 5, 10)
In [261]: %timeit where_based(a, condition)
10 loops, best of 3: 64.9 ms per loop
In [262]: %timeit flatnonzero_based(a, condition)
100 loops, best of 3: 5.32 ms per loop
In [267]: np.unravel_index(np.nanargmin(a), a.shape)
Out[267]: (34, 14, 5, 10)
In [268]: %timeit np.unravel_index(np.nanargmin(a), a.shape)
100 loops, best of 3: 4.54 ms per loop
這應該工作(條件是數據= 0或〜np.isnan(數據)!)
nz = np.where(condition)
cond_arg_min = np.array(nz)[:, np.argmin(data[nz])]
對於NaN的情況有根本'numpy.nanargmin' – user7138814
@ user7138814還不錯在那裏的建議。添加到我的帖子中的時間測試,看起來非常有效! – Divakar
@Demetri P發佈的解決方案是否適合您? – Divakar