我對S3獸人數據的1.2GB,我試圖做同樣的下列內容:SnappyData:java.lang.OutOfMemoryError:GC開銷超過限制
1)高速緩存活潑的羣集上的數據[snappydata 0.9]
2)上的高速緩存的數據集
3)比較用火花的性能執行一個查詢GROUPBY 2.0.0
我使用的是64 GB/8芯機和用於斯納皮配置集羣如下:
012現在$ cat locators
localhost
$cat leads
localhost -heap-size=4096m -spark.executor.cores=1
$cat servers
localhost -heap-size=6144m
localhost -heap-size=6144m
localhost -heap-size=6144m
localhost -heap-size=6144m
localhost -heap-size=6144m
localhost -heap-size=6144m
,我已經寫了一個小python腳本,緩存從S3獸人數據並運行通過查詢一個簡單的基團,其是如下:
from pyspark.sql.snappy import SnappyContext
from pyspark import SparkContext,SparkConf
conf = SparkConf().setAppName('snappy_sample')
sc = SparkContext(conf=conf)
sqlContext = SnappyContext(sc)
sqlContext.sql("CREATE EXTERNAL TABLE if not exists my_schema.my_table using orc options(path 's3a://access_key:[email protected]_name/path')")
sqlContext.cacheTable("my_schema.my_table")
out = sqlContext.sql("select * from my_schema.my_table where (WeekId = '1') order by sum_viewcount desc limit 25")
out.collect()
上述腳本用執行下面的命令:
spark-submit --master local[*] snappy_sample.py
,我得到以下錯誤:
17/10/04 02:50:32 WARN memory.MemoryStore: Not enough space to cache rdd_2_5 in memory! (computed 21.2 MB so far)
17/10/04 02:50:32 WARN memory.MemoryStore: Not enough space to cache rdd_2_0 in memory! (computed 21.2 MB so far)
17/10/04 02:50:32 WARN storage.BlockManager: Persisting block rdd_2_5 to disk instead.
17/10/04 02:50:32 WARN storage.BlockManager: Persisting block rdd_2_0 to disk instead.
17/10/04 02:50:47 WARN storage.BlockManager: Putting block rdd_2_2 failed due to an exception
17/10/04 02:50:47 WARN storage.BlockManager: Block rdd_2_2 could not be removed as it was not found on disk or in memory
17/10/04 02:50:47 ERROR executor.Executor: Exception in task 2.0 in stage 0.0 (TID 2)
java.lang.OutOfMemoryError: GC overhead limit exceeded
at java.nio.HeapByteBuffer.<init>(HeapByteBuffer.java:57)
at java.nio.ByteBuffer.allocate(ByteBuffer.java:335)
at org.apache.spark.sql.execution.columnar.compression.CompressibleColumnBuilder$class.build(CompressibleColumnBuilder.scala:96)
at org.apache.spark.sql.execution.columnar.NativeColumnBuilder.build(ColumnBuilder.scala:97)
at org.apache.spark.sql.execution.columnar.InMemoryRelation$$anonfun$1$$anon$1$$anonfun$next$2.apply(InMemoryRelation.scala:135)
at org.apache.spark.sql.execution.columnar.InMemoryRelation$$anonfun$1$$anon$1$$anonfun$next$2.apply(InMemoryRelation.scala:134)
at scala.collection.TraversableLike$$anonfun$map$1.apply(TraversableLike.scala:234)
at scala.collection.TraversableLike$$anonfun$map$1.apply(TraversableLike.scala:234)
at scala.collection.IndexedSeqOptimized$class.foreach(IndexedSeqOptimized.scala:33)
at scala.collection.mutable.ArrayOps$ofRef.foreach(ArrayOps.scala:186)
at scala.collection.TraversableLike$class.map(TraversableLike.scala:234)
at scala.collection.mutable.ArrayOps$ofRef.map(ArrayOps.scala:186)
at org.apache.spark.sql.execution.columnar.InMemoryRelation$$anonfun$1$$anon$1.next(InMemoryRelation.scala:134)
at org.apache.spark.sql.execution.columnar.InMemoryRelation$$anonfun$1$$anon$1.next(InMemoryRelation.scala:98)
at org.apache.spark.storage.memory.MemoryStore.putIteratorAsValues(MemoryStore.scala:232)
at org.apache.spark.storage.BlockManager$$anonfun$doPutIterator$1.apply(BlockManager.scala:935)
at org.apache.spark.storage.BlockManager$$anonfun$doPutIterator$1.apply(BlockManager.scala:926)
at org.apache.spark.storage.BlockManager.doPut(BlockManager.scala:866)
at org.apache.spark.storage.BlockManager.doPutIterator(BlockManager.scala:926)
at org.apache.spark.storage.BlockManager.getOrElseUpdate(BlockManager.scala:670)
at org.apache.spark.rdd.RDD.getOrCompute(RDD.scala:331)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:282)
at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:320)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:284)
at org.apache.spark.sql.execution.WholeStageCodegenRDD.compute(WholeStageCodegenExec.scala:496)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:320)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:284)
at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:320)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:284)
at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38)
17/10/04 02:50:47 ERROR util.SparkUncaughtExceptionHandler: Uncaught exception in thread Thread[Executor task launch worker-2,5,main]
java.lang.OutOfMemoryError: GC overhead limit exceeded
at java.nio.HeapByteBuffer.<init>(HeapByteBuffer.java:57)
at java.nio.ByteBuffer.allocate(ByteBuffer.java:335)
at org.apache.spark.sql.execution.columnar.compression.CompressibleColumnBuilder$class.build(CompressibleColumnBuilder.scala:96)
at org.apache.spark.sql.execution.columnar.NativeColumnBuilder.build(ColumnBuilder.scala:97)
at org.apache.spark.sql.execution.columnar.InMemoryRelation$$anonfun$1$$anon$1$$anonfun$next$2.apply(InMemoryRelation.scala:135)
at org.apache.spark.sql.execution.columnar.InMemoryRelation$$anonfun$1$$anon$1$$anonfun$next$2.apply(InMemoryRelation.scala:134)
at scala.collection.TraversableLike$$anonfun$map$1.apply(TraversableLike.scala:234)
at scala.collection.TraversableLike$$anonfun$map$1.apply(TraversableLike.scala:234)
at scala.collection.IndexedSeqOptimized$class.foreach(IndexedSeqOptimized.scala:33)
at scala.collection.mutable.ArrayOps$ofRef.foreach(ArrayOps.scala:186)
at scala.collection.TraversableLike$class.map(TraversableLike.scala:234)
at scala.collection.mutable.ArrayOps$ofRef.map(ArrayOps.scala:186)
at org.apache.spark.sql.execution.columnar.InMemoryRelation$$anonfun$1$$anon$1.next(InMemoryRelation.scala:134)
at org.apache.spark.sql.execution.columnar.InMemoryRelation$$anonfun$1$$anon$1.next(InMemoryRelation.scala:98)
at org.apache.spark.storage.memory.MemoryStore.putIteratorAsValues(MemoryStore.scala:232)
at org.apache.spark.storage.BlockManager$$anonfun$doPutIterator$1.apply(BlockManager.scala:935)
at org.apache.spark.storage.BlockManager$$anonfun$doPutIterator$1.apply(BlockManager.scala:926)
at org.apache.spark.storage.BlockManager.doPut(BlockManager.scala:866)
at org.apache.spark.storage.BlockManager.doPutIterator(BlockManager.scala:926)
at org.apache.spark.storage.BlockManager.getOrElseUpdate(BlockManager.scala:670)
at org.apache.spark.rdd.RDD.getOrCompute(RDD.scala:331)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:282)
at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:320)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:284)
at org.apache.spark.sql.execution.WholeStageCodegenRDD.compute(WholeStageCodegenExec.scala:496)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:320)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:284)
at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:320)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:284)
at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38)
17/10/04 02:50:48 INFO snappystore: VM is exiting - shutting down distributed system
除了上面的錯誤,我該如何檢查數據是否被緩存在快速集羣中?