我不確定我做錯了什麼,因爲我幾乎可以肯定地確定我已經引用了變量,並且都是正確的。課程與功能 -
我對使用函數還不太熟悉,並且剛剛開始學習如何在一天前使用Python類。
所以,當我運行代碼,我得到這個錯誤信息:
line 37, in pathlist
while self.no_of_files > 0: #self.number_of_files
AttributeError: 'int' object has no attribute 'no_of_files'
我猜它是與我的代碼順序步驟,或者是因爲我已經轉換輸入到代碼第20行中的int()的numfiles。
我附上我的代碼如下。請幫我在此先感謝:)
import csv
import numpy as np
''' DEFINING MAIN CONTROL'''
def main():
no_of_files # = number_of_files()
a = Calculate_RMSE_Assess_Models()
a.no_of_files() # = no_of_files
a.pathlist()
a.out_path()
a.open_read_write_files()
''' DEFINING CLASS OF ALL '''
class Calculate_RMSE_Assess_Models:
def __init__(self, no_of_files):
self.no_of_files = no_of_files
def number_of_files():
numfiles = input("Enter the number of files to iterate through: ")
numfilesnumber = int(numfiles)
return numfilesnumber
no_of_files = number_of_files()
def pathlist(self):
filepathlist = []
while self.no_of_files > 0: #self.number_of_files
path = input("Enter the filepath of the input file: ")
filepathlist.append(path)
no_of_files = no_of_files - 1
return filepathlist
list_filepath = pathlist(no_of_files)
def out_path():
path = input("Enter the file path of output path: ")
return path
file_out_path = outpath()
def open_read_write_files():
with open('{d[0]}'.format(d=list_filepath), 'r') as csvinput, open('{d[1]}'.format(d=list_filepath), 'r') as csvinput2, open('d{[2]}'.format(d=list_filepath), 'r') as csvinput3, open('{d}'.format(d=file_out_path), 'w') as csvoutput:
reader, reader2, reader3 = csv.reader(csvinput, csvinput2, csvinput3) #1: Decision Forest, 2: Boosted Decision Tree, 3: ANN
writer = csv.DictWriter(csvoutput, lineterminator='\n', fieldnames = ['oldRMSE', 'Decision Forest Regression RMSE', 'Boosted Decision Tree Regression RMSE', 'Neural Network Regression RMSE', 'Old Accurate Predictions', 'Old Inaccurate Predictions', 'Decision Forest Accurate Predictions', 'Decision Forest Inaccurate Predictions', 'Boosted Decision Tree Accurate Predictions', 'Boosted Decision Tree Inaccurate Predictions', 'Neural Network Accurate Predictions', 'Neural Network Inaccurate Predictions'])
#######################################
#For Decision Forest Predictions
headerline = next(reader)
emptyl=[]
for row in reader:
emptyl.append(row)
#Calculate RMSE
DecFSqResidSum = 0
for row in emptyl:
for cell in row:
if cell == row[-3]:
DecFSqResidSum = float(cell) + DecFSqResidSum
DecFSqResidAvg = DecFSqResidSum/len(emptyl)
DecForest_RMSE = np.sqrt(DecFSqResidAvg)
#Constructing No. of Correct/Incorrect Predictions
DecisionForest_Accurate = 0
DecisionForest_Inaccurate = 0
Old_Accurate = 0
Old_Inaccurate = 0
for row in emptyl:
for cell in row:
if cell == row[-2] and 'Accurate' in cell:
Old_Accurate += 1
else:
Old_Inaccurate += 1
if cell == row[-1] and 'Accurate' in cell:
DecisionForest_Accurate += 1
else:
DecisionForest_Inaccurate += 1
######################################
#For Boosted Decision Tree
headerline2 = next(reader2)
emptyl2=[] #make new csv file(list) from csv reader
for row in reader2:
emptyl2.append(row)
#Calculate RMSE
OldSqResidSum = 0
BoostDTSqResidSum = 0
for row in emptyl2: #make Sum of Squared Residuals
for cell in row:
if cell == row[-4]:
OldSqResidSum = float(cell) + OldSqResidSum
if cell == row[-3]:
BoostDTSqResidSum = float(cell) + BoostDTSqResidSum
OldSqResidAvg = OldSqResidSum/len(emptyl2) #divide by N to get average
BoostDTResidAvg = BoostDTSqResidSum/len(emptyl2)
oldRMSE = np.sqrt(OldSqResidAvg) #calculate RMSE of ESTARRTIME & Boosted Decision Tree
BoostedDecTree_RMSE = np.sqrt(BoostDTResidAvg)
#Constructing Correct/Incorrect Predictions
BoostedDT_Accurate = 0
BoostedDT_Inaccurate = 0
for row in emptyl2:
if cell == row[-1] and 'Accurate' in cell:
BoostedDT_Accurate += 1
else:
BoostedDT_Inaccurate += 1
######################################
#For Artificial Neural Network (ANN) Predictions
headerline3 = next(reader3)
emptyl3=[]
for row in reader3:
emptyl3.append(row)
#Calculate RMSE
ANNSqResidSum = 0
for row in emptyl3:
for cell in row:
if cell == row[-3]:
ANNSqResidSum = float(cell) + ANNSqResidSum
ANNSqResidAvg = ANNSqResidSum/len(emptyl3)
ANN_RMSE = np.sqrt(ANNSqResidAvg)
#Constructing Correct/Incorrect Predictions
ANN_Accurate = 0
ANN_Inaccurate = 0
for row in emptyl3:
for cell in row:
if cell == row[-1] and 'Accurate' in cell:
ANN_Accurate += 1
else:
ANN_Inaccurate += 1
#Compile the Error Measures
finalcsv = []
finalcsv.append(oldRMSE)
finalcsv.append(DecForest_RMSE)
finalcsv.append(BoostedDecTree_RMSE)
finalcsv.append(ANN_RMSE)
finalcsv.append(Old_Accurate)
finalcsv.append(Old_Inaccurate)
finalcsv.append(DecisionForest_Accurate)
finalcsv.append(DecisionForest_Inaccurate)
finalcsv.append(BoostedDT_Accurate)
finalcsv.append(BoostedDT_Inaccurate)
finalcsv.append(ANN_Accurate)
finalcsv.append(ANN_Inaccurate)
#Write the Final Comparison file
writer.writeheader()
writer.writerows({'oldRMSE': row[0], 'Decision Forest Regression RMSE': row[1], 'Boosted Decision Tree Regression RMSE': row[2], 'Neural Network Regression RMSE': row[3], 'Old Accurate Predictions': row[4], 'Old Inaccurate Predictions': row[5], 'Decision Forest Accurate Predictions': row[6], 'Decision Forest Inaccurate Predictions': row[7], 'Boosted Decision Tree Accurate Predictions': row[8], 'Boosted Decision Tree Inaccurate Predictions': row[9], 'Neural Network Accurate Predictions': row[10], 'Neural Network Inaccurate Predictions': row[11]} for row in np.nditer(finalcsv))
main()
'回溯(最近最後調用): 文件 「」,第22行,在 類Calculate_RMSE_Assess_Models: 文件 「」,43行,在Calculate_RMSE_Assess_Models list_filepath = pathlist(no_of_files) 文件 「」 ,第37行,在路徑列表 while self.no_of_files> 0: AttributeError:'int'object has no attribute'no_of_files'' –
Christoph
對不起,我沒有在OG文章中包含完整的回溯,認爲它並不重要就像我不得不手動刪除文件目錄一樣,因爲它包含一些機密的東西。 – Christoph
我的答案解釋了爲什麼你會得到這個特定的錯誤。在看回溯時,試着在腦海中走過它。 – Galen