我在Java代碼中生成的決策樹在Weka中如下:寫作的Weka分類的結果,在Java中
J48 j48DecisionTree = new J48();
Instances data = null;
data = new Instances(new BufferedReader(new FileReader(dt.getArffFile())));
data.setClassIndex(data.numAttributes() - 1);
j48DecisionTree.buildClassifier(data);
我能否拯救了Weka的結果會導致緩存到一個文本文件中的程序例如,可以在運行時被保存到一個文本文件中的以下內容:
===分層交叉驗證=== ===總結===
Correctly Classified Instances 229 40.1754 %
Incorrectly Classified Instances 341 59.8246 %
Kappa statistic 0.2022
Mean absolute error 0.1916
Root mean squared error 0.3138
Relative absolute error 80.8346 %
Root relative squared error 91.1615 %
Coverage of cases (0.95 level) 96.3158 %
Mean rel. region size (0.95 level) 70.9774 %
Total Number of Instances 570
=== Detailed Accuracy By Class ===
TP Rate FP Rate Precision Recall F-Measure ROC Area Class
0.44 0.012 0.786 0.44 0.564 0.76 Business and finance and economics
0 0 0 0 0 0.616 Fashion and celebrity lifestyle
0.125 0.01 0.667 0.125 0.211 0.663 Film
0 0.002 0 0 0 0.617 Music
0.931 0.78 0.318 0.931 0.474 0.633 News and current affairs
0.11 0.006 0.786 0.11 0.193 0.653 Science and nature and technology
0.74 0.012 0.86 0.74 0.796 0.85 Sport
加權平均0.402 0.224 0.465 0.402 0.316 0.667
=== Confusion Matrix ===
a b c d e f g <-- classified as
22 0 0 0 25 2 1 | a = Business and finance and economics
0 0 1 0 59 0 0 | b = Fashion and celebrity lifestyle
0 0 10 1 69 0 0 | c = Film
0 0 1 0 69 0 0 | d = Music
5 0 2 0 149 0 4 | e = News and current affairs
1 0 0 0 87 11 1 | f = Science and nature and technology
0 0 1 0 11 1 37 | g = Sport
dt是表示決策樹細節的一個類的實例。
由於我運行了大量的分類器,這會有所幫助。
我可以使用#toString輸出樹。這是我後來的分類結果。我編輯了這個問題來顯示我的意思。 –