1
由於MASS
包中的stepAIC()
函數在函數中使用時有問題,所以我在do.call()
(描述爲here)中使用它。 我的問題聽起來很簡單,但我找不到解決方案:當我使用do.call()
作爲具有多個柵格圖層的lm()
模型時,所有圖層都保存在模型中。如果我想打印模型的summary()
,它會在輸出中寫入所有圖層,並且會變得非常混亂。我如何得到一個「正常的」summary
輸出,因爲我會得到沒有使用do.call
?R:轉換do.call() - 總結小結
下面是一個簡單的例子:
創建柵格圖層列表:
xz.list <- lapply(1:5,function(x){
r1 <- raster(ncol=3, nrow=3)
values(r1) <- 1:ncell(r1)
r1
})
轉換他們在data.frame
:
xz<-getValues(stack(xz.list))
xz <- as.data.frame(xz)
使用do.call
爲lm
型號:
fit1<-do.call("lm", list(xz[,1] ~ . , data = xz))
的summary()
輸出看起來是這樣的:
summary(fit1)
Call:
lm(formula = xz[, 1] ~ ., data = structure(list(layer.1 = 1:9,
layer.2 = 1:9, layer.3 = 1:9, layer.4 = 1:9, layer.5 = 1:9), .Names = c("layer.1",
"layer.2", "layer.3", "layer.4", "layer.5"), row.names = c(NA,
-9L), class = "data.frame"))
Residuals:
Min 1Q Median 3Q Max
-9.006e-16 -2.472e-16 -2.031e-16 -1.370e-16 1.724e-15
Coefficients: (4 not defined because of singularities)
Estimate Std. Error t value Pr(>|t|)
(Intercept) 1.184e-15 5.784e-16 2.047e+00 0.0798 .
layer.1 1.000e+00 1.028e-16 9.729e+15 <2e-16 ***
layer.2 NA NA NA NA
layer.3 NA NA NA NA
layer.4 NA NA NA NA
layer.5 NA NA NA NA
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 7.962e-16 on 7 degrees of freedom
Multiple R-squared: 1, Adjusted R-squared: 1
F-statistic: 9.465e+31 on 1 and 7 DF, p-value: < 2.2e-16
這看起來並不壞在這個小例子,但是當您使用10個或更多raster
層,每個約32K值變得一團糟。所以,我想使輸出的樣子,我只想用summary(lm)
功能而不do.call
:
fit<-lm(xz[,1] ~ . , data=xz)
summary(fit)
Call:
lm(formula = xz[, 1] ~ ., data = xz)
Residuals:
Min 1Q Median 3Q Max
-9.006e-16 -2.472e-16 -2.031e-16 -1.370e-16 1.724e-15
Coefficients: (4 not defined because of singularities)
Estimate Std. Error t value Pr(>|t|)
(Intercept) 1.184e-15 5.784e-16 2.047e+00 0.0798 .
layer.1 1.000e+00 1.028e-16 9.729e+15 <2e-16 ***
layer.2 NA NA NA NA
layer.3 NA NA NA NA
layer.4 NA NA NA NA
layer.5 NA NA NA NA
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 7.962e-16 on 7 degrees of freedom
Multiple R-squared: 1, Adjusted R-squared: 1
F-statistic: 9.465e+31 on 1 and 7 DF, p-value: < 2.2e-16