我有兩個數據框 - 一個客戶的呼叫和另一個識別活動的服務持續時間。每個客戶可以有多個服務,但不會重疊。Pandas合併列之間的日期
df_calls = pd.DataFrame([['A','2016-02-03',1],['A','2016-05-11',2],['A','2016-10-01',3],['A','2016-11-02',4],
['B','2016-01-10',5],['B','2016-04-25',6]], columns = ['cust_id','call_date','call_id'])
print df_calls
cust_id call_date call_id
0 A 2016-02-03 1
1 A 2016-05-11 2
2 A 2016-10-01 3
3 A 2016-11-02 4
4 B 2016-01-10 5
5 B 2016-04-25 6
和
df_active = pd.DataFrame([['A','2016-01-10','2016-03-15',1],['A','2016-09-10','2016-11-15',2],
['B','2016-01-02','2016-03-17',3]], columns = ['cust_id','service_start','service_end','service_id'])
print df_active
cust_id service_start service_end service_id
0 A 2016-01-10 2016-03-15 1
1 A 2016-09-10 2016-11-15 2
2 B 2016-01-02 2016-03-17 3
我需要找到每個調用屬於由SERVICE_START和service_end日期標識的的service_id。如果呼叫不在日期之間,則應保留在數據集中。
這裏是我試過到目前爲止:
df_test_output = pd.merge(df_calls,df_active, how = 'left',on = ['cust_id'])
df_test_output = df_test_output[(df_test_output['call_date']>= df_test_output['service_start'])
& (df_test_output['call_date']<= df_test_output['service_end'])].drop(['service_start','service_end'],axis = 1)
print df_test_output
cust_id call_date call_id service_id
0 A 2016-02-03 1 1
5 A 2016-10-01 3 2
7 A 2016-11-02 4 2
8 B 2016-01-10 5 3
這種下降是沒有服務日期之間的所有呼叫。關於如何在滿足條件的service_id上合併,但保留其餘記錄的想法?
結果應該是這樣的:
#do black magic
print df_calls
cust_id call_date call_id service_id
0 A 2016-02-03 1 1.0
1 A 2016-05-11 2 NaN
2 A 2016-10-01 3 2.0
3 A 2016-11-02 4 2.0
4 B 2016-01-10 5 3.0
5 B 2016-04-25 6 NaN
您可以加入'df_calls2'用'df_calls'上'call_id' –