0
我有一個多索引DF結構如下:排名多索引DF
>>> df = pd.DataFrame({(2014, 'value'): {('AR', 0): 1.2420, ('AR', 1): 0.1802,('BR', 0): 1.3,('BR', 1): 0.18}})
>>> print df
2014
value
AR 0 1.2420
1 0.1802
BR 0 1.3000
1 0.1800
我的目標是增加一列「等級」,即包含的國家排名(AR & BR )爲0 & 1以降序排列。期望的結果會是這樣的:
2014
value rank
iso id
AR 0 1.2420 2
1 0.1802 1
BR 0 1.3 1
1 0.18 2
我最初的做法是重置索引:
>>> df = df.reset_index()
>>> print df
level_0 level_1 2014
value
0 AR 0 1.2420
1 AR 1 0.1802
2 BR 0 1.3000
3 BR 1 0.1800
,然後使用GROUPBY和等級添加「排名」列:
>>> df[2014, 'gr'] = df.groupby(['level_1'])[2014, 'value'].rank(ascending=False)
但是,該結果在:
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "/usr/local/lib/python2.7/dist-packages/pandas/core/groupby.py", line 2990, in __getitem__
if len(self.obj.columns.intersection(key)) != len(key):
File "/usr/local/lib/python2.7/dist-packages/pandas/core/index.py", line 3774, in intersection
result_names = self.names if self.names == other.names else None
AttributeError: 'tuple' object has no attribute 'names'
我在正確的軌道上,我應該考慮另一種方法嗎?
感謝設置。這比我想象的更簡單。我設置的值略有不同:'''df [(2014,'rank')] = df.groupby(level = 1).rank(ascending = False)'''' – Olaf 2014-09-23 06:18:13