2015-08-31 74 views
5

我想創建一個正餘弦查找表進行優化,通過使用從0到UCHAR_MAX數組索引,使0弧度指數0,pi/2弧度UCHAR_MAX/4當弧度很大時,爲什麼這個sin cos查表不準確?

sincos.h

#include <limits.h> 
#include <math.h> 
int sini[UCHAR_MAX]; 
int cosi[UCHAR_MAX]; 
#define MAGNIFICATION 256 
#define SIN(i) sini[i]/MAGNIFICATION 
#define COS(i) cosi[i]/MAGNIFICATION 

void initTable(){ 
    for(int i=0;i<UCHAR_MAX;i++){ 
     sini[i]=sinf(i*2*M_PI/UCHAR_MAX)*MAGNIFICATION; 
     cosi[i]=cosf(i*2*M_PI/UCHAR_MAX)*MAGNIFICATION; 
    } 
} 

使用UCHAR_MAX作爲最大值的原因是我想充分利用無符號字符溢出來模擬僅從0變化到2*pi的弧度:例如,如果弧度值爲2*pi,則數組的索引變成UCHAR_MAX ,因爲它溢出,它自動ly變成0並且不需要mod(如果我使用0到360作爲域,我可能需要每次計算index%360)。然後,我與一些弧度值測試:

float rad[]={2.0f,4.0f,6.0f,8.0f,10.0f,-2.0f,-4.0f,-6.0f,-8.0f,-10.0f}; 

類似如下:

#include "sincos.h" 
#include <stdio.h> 
int main(){ 
    initTable(); 
    unsigned char radToIndex; 
    float rad[]={2.0f,4.0f,6.0f,8.0f,10.0f,-2.0f,-4.0f,-6.0f,-8.0f,-10.0f}; 
    int scalar=123; 
    printf("scalar=%d\n",scalar); 
    for(int i=0;i<sizeof(rad)/sizeof(float);i++){ 
     radToIndex=rad[i]*UCHAR_MAX/2/M_PI; 
     printf("%d*sin(%f) : %f , %d\n",scalar,rad[i],scalar*sinf(rad[i]),scalar*SIN(radToIndex)); 
    } 
    return 0; 
} 

123*sin(radian)測試表,結果發現開始超越實際的一個弧度的幅度增加時(當弧度爲10或-10):

scalar=123 
123*sin(2.000000) : 111.843582 , 111 
123*sin(4.000000) : -93.086708 , -92 
123*sin(6.000000) : -34.368107 , -35 
123*sin(8.000000) : 121.691063 , 122 
123*sin(10.000000) : -66.914597 , -61 
123*sin(-2.000000) : -111.843582 , -112 
123*sin(-4.000000) : 93.086708 , 90 
123*sin(-6.000000) : 34.368107 , 38 
123*sin(-8.000000) : -121.691063 , -122 
123*sin(-10.000000) : 66.914597 , 59 

和測試與另一數據:

float rad[]={0.01f,0.1f,1.0f,10.0f,100.0f,1000.0f,-0.01f,-0.1f,-1.0f,-10.0f,-100.0f,-1000.0f}; 

輸出:

scalar=123 
123*sin(0.010000) : 1.229980 , 0 
123*sin(0.100000) : 12.279510 , 12 
123*sin(1.000000) : 103.500931 , 102 
123*sin(10.000000) : -66.914597 , -61 
123*sin(100.000000) : -62.282974 , -97 
123*sin(1000.000000) : 101.706184 , -25 
123*sin(-0.010000) : -1.229980 , 0 
123*sin(-0.100000) : -12.279510 , -8 
123*sin(-1.000000) : -103.500931 , -100 
123*sin(-10.000000) : 66.914597 , 59 
123*sin(-100.000000) : 62.282974 , 98 
123*sin(-1000.000000) : -101.706184 , 22 

錯誤時增加幅度增大,所以我敢肯定,當弧度大表變得不準確。在sincos.h有一個值倍率控制精度,我改變了它從256到4096,但似乎沒有太大的改善:

scalar=123 
123*sin(0.010000) : 1.229980 , 0 
123*sin(0.100000) : 12.279510 , 12 
123*sin(1.000000) : 103.500931 , 102 
123*sin(10.000000) : -66.914597 , -62 
123*sin(100.000000) : -62.282974 , -97 
123*sin(1000.000000) : 101.706184 , -25 
123*sin(-0.010000) : -1.229980 , 0 
123*sin(-0.100000) : -12.279510 , -9 
123*sin(-1.000000) : -103.500931 , -100 
123*sin(-10.000000) : 66.914597 , 59 
123*sin(-100.000000) : 62.282974 , 99 
123*sin(-1000.000000) : -101.706184 , 22 

爲什麼會發生呢?表有邏輯錯誤嗎?

+0

如何你messure的準確性? – Zich

回答

5

[編輯]

代碼經驗問題,因爲過去的角度的增加歸因於OP的下面的代碼錯誤的「模」算法360度。產品rad[i]*UCHAR_MAX/2/M_PI被轉換爲模數爲256的(8位)unsigned char,但代碼是通過UCHAR_MAX(255)縮放表和代碼。這個這個答案的最後一點細節方面,但很顯然,表和代碼應該是使用256,而不是255

unsigned char radToIndex; 
radToIndex=rad[i]*UCHAR_MAX/2/M_PI; // wrong scaling 
radToIndex=rad[i]*(UCHAR_MAX+1)/2/M_PI; // right 

此外,注意OP的代碼是未定義行爲時radToIndex == UCHAR_MAX,因爲這是一個索引無效到int sini[UCHAR_MAX];

使用下面修正上述修復和3:表大小256,圓形指數,圓正弦的值,使用雙用於創建表的結果:

123*sin(2.000000) : 111.843584 , 112 
123*sin(4.000000) : -93.086707 , -93 
123*sin(6.000000) : -34.368106 , -35 
123*sin(8.000000) : 121.691064 , 121 
123*sin(10.000000) : -66.914597 , -65 
123*sin(-2.000000) : -111.843584 , -112 
123*sin(-4.000000) : 93.086707 , 93 
123*sin(-6.000000) : 34.368106 , 35 
123*sin(-8.000000) : -121.691064 , -121 
123*sin(-10.000000) : 66.914597 , 65 

代碼也正在經歷double rounding或多個珍貴:雙截。

radToIndex=rad[i]*UCHAR_MAX/2/M_PI;向0截斷。因此索引變小了,不是最接近的。

表格創建sini[i]=sinf(i*2*M_PI/UCHAR_MAX)*MAGNIFICATION;也截斷爲0.所以sini[]被製作得更小,不是最接近的int

要改善,只需向round()四捨五入就近。

sini[i] = (int) roundf(sinf(i*2*M_PI/UCHAR_MAX)*MAGNIFICATION); 
radToIndex= (int) round(rad[i]*UCHAR_MAX/2/M_PI); 

作爲一般註釋,因爲float是通常爲24位精度和int可能31 +符號,使用double用於創建表的額外改進。

sini[i] = (int) round(sin(i*2.0*M_PI/UCHAR_MAX)*MAGNIFICATION); 

此外,建議使用UCHAR_MAX + 1參見BAM

關由1

數組的索引變得UCHAR_MAX,因爲它溢出,它會自動變爲0

UCHAR_MAX沒有溢出,溢出UCHAR_MAX + 1和變爲0(unsigned char數學)的問題

int sini[UCHAR_MAX+1]; 
for (int i=0; i<(UCHAR_MAX+1); i++) { 
    // Rather than `i*2*M_PI/UCHAR_MAX`, use 
    sini[i]=sinf(i*2*M_PI/(UCHAR_MAX + 1))*MAGNIFICATION; 
+0

當'MAGNIFICATION> 1e23'時,在創建表格時使用'double'和'sin()'。 – chux

0

來源

它看起來好像你是浮點數的舍入和分配浮點數來得到錯誤一個unsigned char

下面的程序,根據您的發佈代碼進行了修改,演示了即使您在四捨五入浮點數之後索引也開始偏離。

#include <limits.h> 
#include <math.h> 

int sini[UCHAR_MAX]; 
int cosi[UCHAR_MAX]; 
double angle[UCHAR_MAX]; 


#define MAGNIFICATION 256 
#define SIN(i) sini[i]/MAGNIFICATION 
#define COS(i) cosi[i]/MAGNIFICATION 

void initTable() 
{ 
    double M_PI = 4.0*atan(1.0); 
    for(int i=0;i<UCHAR_MAX;i++) 
    { 
     angle[i] = i*2*M_PI/UCHAR_MAX; 
     sini[i]=sinf(angle[i])*MAGNIFICATION; 
     cosi[i]=cosf(angle[i])*MAGNIFICATION; 
    } 
} 

#include <stdio.h> 

void test3() 
{ 
    int radToIndexInt; 
    unsigned char radToIndexChar; 
    float radTemp; 
    float rad[]={2.0f,4.0f,6.0f,8.0f,10.0f,-2.0f,-4.0f,-6.0f,-8.0f,-10.0f}; 
    double M_PI = 4.0*atan(1.0); 

    for(int i=0;i<sizeof(rad)/sizeof(float);i++) 
    { 
     radTemp = rad[i]*UCHAR_MAX/2/M_PI; 
     radToIndexInt = round(radTemp); 
     radToIndexInt %= UCHAR_MAX; 
     if (radToIndexInt < 0) 
     { 
     radToIndexInt += UCHAR_MAX; 
     } 

     radToIndexChar = round(radTemp); 

     printf("radToIndexInt: %d, radToIndexChar: %d\n", 
      radToIndexInt, radToIndexChar); 

    } 
} 

int main() 
{ 
    initTable(); 

    test3(); 

    return 0; 
} 

輸出上述方案:

radToIndexInt: 81, radToIndexChar: 81 
radToIndexInt: 162, radToIndexChar: 162 
radToIndexInt: 244, radToIndexChar: 244 
radToIndexInt: 70, radToIndexChar: 69 
radToIndexInt: 151, radToIndexChar: 150 
radToIndexInt: 174, radToIndexChar: 175 
radToIndexInt: 93, radToIndexChar: 94 
radToIndexInt: 11, radToIndexChar: 12 
radToIndexInt: 185, radToIndexChar: 187 
radToIndexInt: 104, radToIndexChar: 106 

解決方案

通過使用

radToIndex=round(radTemp); 
    radToIndex %= UCHAR_MAX; 
    if (radToIndex < 0) 
    { 
    radToIndex += UCHAR_MAX; 
    } 

計算指數,我非常接近的答案:

下面是一個程序,再次根據您發佈的代碼進行調整,表明使用上述邏輯有效。

#include <limits.h> 
#include <math.h> 

int sini[UCHAR_MAX]; 
int cosi[UCHAR_MAX]; 
double angle[UCHAR_MAX]; 


#define MAGNIFICATION 256 
#define SIN(i) sini[i]/MAGNIFICATION 
#define COS(i) cosi[i]/MAGNIFICATION 

void initTable() 
{ 
    double M_PI = 4.0*atan(1.0); 
    for(int i=0;i<UCHAR_MAX;i++) 
    { 
     angle[i] = i*2*M_PI/UCHAR_MAX; 
     sini[i]=sinf(angle[i])*MAGNIFICATION; 
     cosi[i]=cosf(angle[i])*MAGNIFICATION; 
    } 
} 

#include <stdio.h> 

void test2() 
{ 
    int radToIndex; 
    float radTemp; 
    int scalar=123; 
    float rad[]={0.01f,0.1f,1.0f,10.0f,100.0f,1000.0f,-0.01f,-0.1f,-1.0f,-10.0f,-100.0f,-1000.0f}; 
    double M_PI = 4.0*atan(1.0); 

    printf("scalar=%d\n",scalar); 
    for(int i=0;i<sizeof(rad)/sizeof(float);i++) 
    { 
     radTemp = rad[i]*UCHAR_MAX/2/M_PI; 
     radToIndex=round(radTemp); 
     radToIndex %= UCHAR_MAX; 
     if (radToIndex < 0) 
     { 
     radToIndex += UCHAR_MAX; 
     } 
     printf("%d*sin(%f) : %f , %d\n", 
      scalar,rad[i],scalar*sinf(rad[i]),scalar*SIN(radToIndex)); 

    } 
} 

void test1() 
{ 
    int radToIndex; 
    float radTemp; 
    int scalar=123; 
    float rad[]={2.0f,4.0f,6.0f,8.0f,10.0f,-2.0f,-4.0f,-6.0f,-8.0f,-10.0f}; 
    double M_PI = 4.0*atan(1.0); 

    printf("scalar=%d\n",scalar); 
    for(int i=0;i<sizeof(rad)/sizeof(float);i++) 
    { 
     radTemp = rad[i]*UCHAR_MAX/2/M_PI; 
     radToIndex=round(radTemp); 
     radToIndex %= UCHAR_MAX; 
     if (radToIndex < 0) 
     { 
     radToIndex += UCHAR_MAX; 
     } 
     printf("%d*sin(%f) : %f , %d\n", 
      scalar,rad[i],scalar*sinf(rad[i]),scalar*SIN(radToIndex)); 

    } 
} 

int main() 
{ 
    initTable(); 

    test1(); 
    test2(); 

    return 0; 
} 

輸出:

scalar=123 
123*sin(2.000000) : 111.843582 , 111 
123*sin(4.000000) : -93.086708 , -92 
123*sin(6.000000) : -34.368107 , -32 
123*sin(8.000000) : 121.691063 , 121 
123*sin(10.000000) : -66.914597 , -67 
123*sin(-2.000000) : -111.843582 , -111 
123*sin(-4.000000) : 93.086708 , 92 
123*sin(-6.000000) : 34.368107 , 32 
123*sin(-8.000000) : -121.691063 , -121 
123*sin(-10.000000) : 66.914597 , 67 
scalar=123 
123*sin(0.010000) : 1.229980 , 0 
123*sin(0.100000) : 12.279510 , 12 
123*sin(1.000000) : 103.500931 , 103 
123*sin(10.000000) : -66.914597 , -67 
123*sin(100.000000) : -62.282974 , -63 
123*sin(1000.000000) : 101.706184 , 102 
123*sin(-0.010000) : -1.229980 , 0 
123*sin(-0.100000) : -12.279510 , -12 
123*sin(-1.000000) : -103.500931 , -103 
123*sin(-10.000000) : 66.914597 , 67 
123*sin(-100.000000) : 62.282974 , 63 
123*sin(-1000.000000) : -101.706184 , -102 
相關問題