減少可能是你想要什麼:
我consolodated你的一些符號組分爲A,B,C(不nesesary,使得它適合在屏幕上)
Reduce[{dist^2 == xstep^2 + (A)^2 &&
dist^2 == (C - NC xstep)^2 + (B - dist/2)^2 , {xstep, dist}]]
這就產生了一個相當大的輸出與一堆條件。
如果你已經知道,排除各種degenrate情況下,它有助於指定約束(我做這些了)
$Assumptions = B != 0 && B^2 != 3 C^2 && NC^2 != 3/4;
注$假設所使用的簡化,但你需要明確地將其添加到表達減少..
Simplify[Reduce[{dist^2 == xstep^2 + (A)^2 &&
dist^2 == (C - NC xstep)^2 + (B - dist/2)^2 && $Assumptions }, {xstep, dist}]]
輸出..不是太unwiledy ..根表達式包含你所尋求的係數..
(xstep ==
Root[9 A^4 - 40 A^2 B^2 + 16 B^4 - 24 A^2 C^2 + 32 B^2 C^2 +
16 C^4 + (48 A^2 C NC - 64 B^2 C NC -
64 C^3 NC) #1 + (18 A^2 - 40 B^2 - 24 C^2 - 24 A^2 NC^2 +
32 B^2 NC^2 + 96 C^2 NC^2) #1^2 + (48 C NC -
64 C NC^3) #1^3 + (9 - 24 NC^2 + 16 NC^4) #1^4 &, 1] ||
xstep ==
Root[9 A^4 - 40 A^2 B^2 + 16 B^4 - 24 A^2 C^2 + 32 B^2 C^2 +
16 C^4 + (48 A^2 C NC - 64 B^2 C NC -
64 C^3 NC) #1 + (18 A^2 - 40 B^2 - 24 C^2 - 24 A^2 NC^2 +
32 B^2 NC^2 + 96 C^2 NC^2) #1^2 + (48 C NC -
64 C NC^3) #1^3 + (9 - 24 NC^2 + 16 NC^4) #1^4 &, 2] ||
xstep ==
Root[9 A^4 - 40 A^2 B^2 + 16 B^4 - 24 A^2 C^2 + 32 B^2 C^2 +
16 C^4 + (48 A^2 C NC - 64 B^2 C NC -
64 C^3 NC) #1 + (18 A^2 - 40 B^2 - 24 C^2 - 24 A^2 NC^2 +
32 B^2 NC^2 + 96 C^2 NC^2) #1^2 + (48 C NC -
64 C NC^3) #1^3 + (9 - 24 NC^2 + 16 NC^4) #1^4 &, 3] ||
xstep ==
Root[9 A^4 - 40 A^2 B^2 + 16 B^4 - 24 A^2 C^2 + 32 B^2 C^2 +
16 C^4 + (48 A^2 C NC - 64 B^2 C NC -
64 C^3 NC) #1 + (18 A^2 - 40 B^2 - 24 C^2 - 24 A^2 NC^2 +
32 B^2 NC^2 + 96 C^2 NC^2) #1^2 + (48 C NC -
64 C NC^3) #1^3 + (9 - 24 NC^2 + 16 NC^4) #1^4 &, 4]) &&
3 A^2 + 4 B dist + xstep (8 C NC + 3 xstep) ==
4 (B^2 + C^2 + NC^2 xstep^2)
你爲什麼要解決表達式中不存在的xx? – agentp
編輯錯誤:替換xstep。抱歉。 – jdaw1