4
我正在通過Aguinis, Gottfredson, & Culpepper (2013)的示例進行工作。他們提供了一些R代碼在R中執行自舉程序來估計斜率變異的置信區間。這是他們的原始R代碼:使用lme4模型和缺失值引導
library(RLRsim)
#STEP 3: Random Intercept and Random Slope model
lmm.fit3=lmer(Y ~ (Xc|l2id) + Xc + I(Wj-mean(Wj)), data=exdata, REML=F)
# Nonparametric Bootstrap Function
REMLVC=VarCorr(lmer(Y ~Xc+(Xc|l2id)+I(Wj-mean(Wj)),data=exdata,REML=T))$l2id[1:2,1:2]
U.R=chol(REMLVC)
REbootstrap=function(Us,es,X,gs){
nj=nrow(Us)
idk=sample(1:nj,size=nj,replace=T)
Usk=as.matrix(Us[idk,])
esk=sample(es,size=length(es),replace=T)
S=t(Usk)%*%Usk/nj
U.S = chol(S)
A=solve(U.S)%*%U.R
Usk = Usk%*%A
datk=expand.grid(l1id = 1:6,l2id = 1:nj)
colnames(X)=c('one','Xc','Wjc')
datk=cbind(datk,X)
datk$yk = X%*%gs + Usk[datk$l2id,1]+Usk[datk$l2id,2]*X[,2]+esk
lmm.fitk=lmer(yk ~Xc+(Xc|l2id)+Wjc,data=datk,REML=F)
tau11k = VarCorr(lmm.fitk)$l2id[2,2]
tau11k
}
# Implementing Bootstrap
bootks=replicate(1500,REbootstrap(Us=ranef(lmm.fit3)$l2id,es=resid(lmm.fit3),X=model.matrix(lmm.fit3),gs=fixef(lmm.fit3)))
quantile(bootks,probs=c(.025,.975))
我試圖調整代碼以適應我自己的數據和模型。這是迄今爲止沒有結果的,因爲(a)我沒有完全理解所有的代碼行,並且(b)我在一個預測變量中缺少數據點。以下是我迄今爲止:
#reproducible code
set.seed(855)
exdf <- data.frame(
ID= c(rep(1:105, 28)),
content= sort(c(rep(1:28, 105))),
PrePost= sample(0:1, 105*28, replace=TRUE),
eyeFRF= sort(rep(rnorm(28), 105)),
APMs= sample(0:1, 105*28, replace=TRUE),
Gf= rep(rnorm(105), 28)
)
exdf[which(exdf$ID==62), "eyeFRF"] <- NA
RandomMissing <- sample(rownames(exdf[-which(exdf$ID==62), ]), 17)
exdf[RandomMissing, "eyeFRF"] <- NA
View(exdf)
#model
M03b <- glmer(APMs ~ PrePost + Gf + eyeFRF + (1|content) + (eyeFRF|ID), data=exdf, family=binomial("logit"))
#own adaptation
REMLVC=VarCorr(M03b)$ID[1:2,1:2]
U.R=chol(REMLVC)
REbootstrap=function(Us, es, X, gs){
#Us = random effects
#es = residuals
#X = design matrix
#gs = fixed effects
nj = nrow(Us) #104 in this case, one is excluded (#62) b/c no eye-data
idk = sample(1:nj, size=nj, replace=TRUE) #104 IDs
Usk = as.matrix(Us[idk,]) #104 intercepts and slopes
esk = sample(es, size=length(es), replace=TRUE) #2895 datapoints called 'x' (errors?)
S = t(Usk)%*%Usk/nj #?
U.S = chol(S) #?
A = solve(U.S)%*%U.R #?
Usk = Usk%*%A #?
datk = expand.grid(content=1:28, ID=1:nj)
colnames(X) = c('one', 'PrePost', 'Gf', 'eyeFRF')
datk = cbind(datk, X)
datk$APMsk = X%*%gs + Usk[datk$ID,1] + Usk[datk$ID,2]*X[ ,2] + esk
lmm.fitk = glmer(APMsk ~ PrePost + Gf + eyeFRF + (1|content) + (zb|ID), data=datk, family=binomial("logit"))
tau11k = VarCorr(lmm.fitk)$l2id[2,2]
tau11k
}
# Implementing Bootstrap
bootks <- replicate(1500, REbootstrap(Us=ranef(M03b)$ID, es=resid(M03b), X=model.matrix(M03b), gs=fixef(M03b)))
quantile(bootks, probs=c(.025,.975))
你能提供一個有效的引用你引用的論文嗎? – Tim
你可以從這裏下載[鏈接](http://mypage.iu.edu/~haguinis/JOMR.html) –
如果你想通過參數引導獲得置信區間,'confint(M03b,method = 「boot」)'爲你工作? (我認爲這些方法可能是新的或更好的發展,因爲這篇論文寫得很好......) –