我寫了一個Tensorflow程序,該程序讀取128x128
圖像。該程序在我的筆記本電腦上運行良好,我用它來檢查代碼是否正常。 第一個程序是基於MNIST教程的,第二個是使用MNIST示例的convNN。從我在網上閱讀Tensorflow耗盡資源
ResourceExhaustedError (see above for traceback): OOM when allocating tensor with shape[16384,20000]
[[Node: inputLayer_1/weights/Variable/Adam_1/Assign = Assign[T=DT_FLOAT, _class=["loc:@inputLayer_1/weights/Variable"], use_locking=true, validate_shape=true, _device="/job:localhost/replica:0/task:0/gpu:0"](inputLayer_1/weights/Variable/Adam_1, inputLayer_1/weights/Variable/Adam_1/Initializer/Const)]]
:當我嘗試在GPU上運行它們,我收到以下錯誤消息。我必須在我的測試中使用批次,以下是餵養的工作方式:
...........................................
batchSize = 40
img_height = 128
img_width = 128
# 1st function to read images form TF_Record
def getImage(filename):
# convert filenames to a queue for an input pipeline.
filenameQ = tf.train.string_input_producer([filename],num_epochs=None)
# object to read records
recordReader = tf.TFRecordReader()
# read the full set of features for a single example
key, fullExample = recordReader.read(filenameQ)
# parse the full example into its' component features.
features = tf.parse_single_example(
fullExample,
features={
'image/height': tf.FixedLenFeature([], tf.int64),
'image/width': tf.FixedLenFeature([], tf.int64),
'image/colorspace': tf.FixedLenFeature([], dtype=tf.string,default_value=''),
'image/channels': tf.FixedLenFeature([], tf.int64),
'image/class/label': tf.FixedLenFeature([],tf.int64),
'image/class/text': tf.FixedLenFeature([], dtype=tf.string,default_value=''),
'image/format': tf.FixedLenFeature([], dtype=tf.string,default_value=''),
'image/filename': tf.FixedLenFeature([], dtype=tf.string,default_value=''),
'image/encoded': tf.FixedLenFeature([], dtype=tf.string, default_value='')
})
# now we are going to manipulate the label and image features
label = features['image/class/label']
image_buffer = features['image/encoded']
# Decode the jpeg
with tf.name_scope('decode_jpeg',[image_buffer], None):
# decode
image = tf.image.decode_jpeg(image_buffer, channels=3)
# and convert to single precision data type
image = tf.image.convert_image_dtype(image, dtype=tf.float32)
# cast image into a single array, where each element corresponds to the greyscale
# value of a single pixel.
# the "1-.." part inverts the image, so that the background is black.
image=tf.reshape(1-tf.image.rgb_to_grayscale(image),[img_height*img_width])
# re-define label as a "one-hot" vector
# it will be [0,1] or [1,0] here.
# This approach can easily be extended to more classes.
label=tf.stack(tf.one_hot(label-1, numberOFclasses))
return label, image
train_img,train_label = getImage(TF_Records+"/train-00000-of-00001")
validation_img,validation_label=getImage(TF_Records+"/validation-00000-of-00001")
# associate the "label_batch" and "image_batch" objects with a randomly selected batch---
# of labels and images respectively
train_imageBatch, train_labelBatch = tf.train.shuffle_batch([train_img, train_label], batch_size=batchSize,capacity=50,min_after_dequeue=10)
# and similarly for the validation data
validation_imageBatch, validation_labelBatch = tf.train.shuffle_batch([validation_img, validation_label],
batch_size=batchSize,capacity=50,min_after_dequeue=10)
......................... ...............................
sess.run(tf.global_variables_initializer())
# start the threads used for reading files
coord = tf.train.Coordinator()
threads = tf.train.start_queue_runners(sess=sess,coord=coord)
# feeding function
def feed_dict(train):
if True :
#img_batch, labels_batch= tf.train.shuffle_batch([train_label,train_img],batch_size=batchSize,capacity=500,min_after_dequeue=200)
img_batch , labels_batch = sess.run([ train_labelBatch ,train_imageBatch])
dropoutValue = 0.7
else:
# img_batch,labels_batch = tf.train.shuffle_batch([validation_label,validation_img],batch_size=batchSize,capacity=500,min_after_dequeue=200)
img_batch,labels_batch = sess.run([ validation_labelBatch,validation_imageBatch])
dropoutValue = 1
return {x:img_batch,y_:labels_batch,keep_prob:dropoutValue}
for i in range(max_numberofiteretion):
if i%10 == 0:#Run a Test
summary, acc = sess.run([merged,accuracy],feed_dict=feed_dict(False))
test_writer.add_summary(summary,i)# Save to TensorBoard
else: # Training
if i % 100 == 99: # Record execution stats
run_options = tf.RunOptions(trace_level=tf.RunOptions.FULL_TRACE)
run_metadata = tf.RunMetadata()
summary, _ = sess.run([merged, train_step],
feed_dict=feed_dict(True),
options=run_options,
run_metadata=run_metadata)
train_writer.add_run_metadata(run_metadata, 'step%03d' % i)
train_writer.add_summary(summary, i)
print('Adding run metadata for', i)
else: # Record a summary
summary, _ = sess.run([merged, train_step], feed_dict=feed_dict(True))
train_writer.add_summary(summary, i)
# finalise
coord.request_stop()
coord.join(threads)
train_writer.close()
test_writer.close()
............ ......................................
驗證文件夾包含2100個文件,所以是的,我明白這是太多了,
我發現這個suggestion
config = tf.ConfigProto()
config.gpu_options.allocator_type = 'BFC'
with tf.Session(config = config) as s:......
但是這並沒有解決問題! 任何想法如何解決這個問題?
感謝您的回覆,我仍然需要一些澄清。請舉例說明如何使用_is_train來調用sess.run函數。第二,在這種情況下,在這種情況下,隊列是如何工作的,在我的例子中,我每次運行驗證和訓練批處理以確保我調用新數據,但我不明白它如何在你的示例中起作用。 非常感謝您的幫助 – Engine
編輯使其更加清晰。 –
我已經嘗試過,但餵食沒有奏效。但資源已解決。謝謝 – Engine