2012-12-23 449 views
9

對於我的學習,我必須編寫以下函數,它可以獲得兩個國家之間的最短路徑。我已經寫過一個函數isRoute來檢查兩個國家之間是否存在連接,而函數yieldRoute只是返回兩個國家之間的連接。 現在我必須編寫一個返回兩個國家之間最短路線的函數。如何在Haskell中實現Dijkstra算法

我的第一個方法是獲得兩個國家之間的所有聯繫,然後獲得最短的聯繫,但在我看來,獲得所有聯繫對程序員來說是一件煩人的事情。現在我想出實現dijstra算法的想法,但實際上我也覺得這很難。你們可以給我一些想法如何做到這一點?

我們必須使用這些類型

type Country = String 
type Countries = [Country] 
type TravelTime = Integer -- Travel time in minutes 
data Connection = Air Country Country TravelTime 
    | Sea Country Country TravelTime 
    | Rail Country Country TravelTime 
    | Road Country Country TravelTime deriving (Eq,Ord,Show) 
type Connections = [Connection] 
data Itinerary = NoRoute | Route (Connections,TravelTime) deriving (Eq,Ord,Show) 

我屈服路由功能這簡直是廣度優先搜索(我們不能改變他們,但我們OFC允許添加新類型):(Sry基因德國評論)

-- Liefert eine Route falls es eine gibt 
yieldRoute :: Connections -> Country -> Country -> Connections 
yieldRoute cons start goal 
      | isRoute cons start goal == False = [] 
      | otherwise      = getRoute cons start [] [start] goal 

getRoute :: Connections -> Country -> Connections -> Countries -> Country -> Connections 
getRoute cons c gone visited target 
      | (c == target) = gone 
      | otherwise = if (visit cons c visited) then (getRoute cons (deeper cons c visited) (gone ++ get_conn cons c (deeper cons c visited)) (visited ++ [(deeper cons c visited)]) target) else (getRoute cons (back (drop (length gone -1) gone)) (take (length gone -1) gone) visited target) 

-- Geht ein Land zurück 
back :: Connections -> Country 
back ((Air c1 c2 _):xs) = c1 
back ((Sea c1 c2 _):xs) = c1 
back ((Rail c1 c2 _):xs) = c1 
back ((Road c1 c2 _):xs) = c1 

-- Liefert das nächste erreichbare Country 
deeper :: Connections -> Country -> Countries -> Country 
deeper ((Air c1 c2 _):xs) c visited 
      | (c1 == c) = if (c2 `elem` visited) then (deeper xs c visited) else c2 
      | (c2 == c) = if (c1 `elem` visited) then (deeper xs c visited) else c1 
      | otherwise = deeper xs c visited 
deeper ((Sea c1 c2 _):xs) c visited 
      | (c1 == c) = if (c2 `elem` visited) then (deeper xs c visited) else c2 
      | (c2 == c) = if (c1 `elem` visited) then (deeper xs c visited) else c1 
      | otherwise = deeper xs c visited 
deeper ((Rail c1 c2 _):xs) c visited 
      | (c1 == c) = if (c2 `elem` visited) then (deeper xs c visited) else c2 
      | (c2 == c) = if (c1 `elem` visited) then (deeper xs c visited) else c1 
      | otherwise = deeper xs c visited 
deeper ((Road c1 c2 _):xs) c visited 
      | (c1 == c) = if (c2 `elem` visited) then (deeper xs c visited) else c2 
      | (c2 == c) = if (c1 `elem` visited) then (deeper xs c visited) else c1 
      | otherwise = deeper xs c visited 

-- Liefert eine Connection zwischen zwei Countries 
get_conn :: Connections -> Country -> Country -> Connections 
get_conn [] _ _ = error "Something went terribly wrong" 
get_conn ((Air c1 c2 t):xs) c3 c4 
      | (c1 == c3) && (c2 == c4) = [(Air c1 c2 t)] 
      | (c1 == c4) && (c2 == c3) = [(Air c1 c2 t)] 
      | otherwise    = get_conn xs c3 c4 
get_conn ((Sea c1 c2 t):xs) c3 c4 
      | (c1 == c3) && (c2 == c4) = [(Air c1 c2 t)] 
      | (c1 == c4) && (c2 == c3) = [(Air c1 c2 t)] 
      | otherwise    = get_conn xs c3 c4 
get_conn ((Road c1 c2 t):xs) c3 c4 
      | (c1 == c3) && (c2 == c4) = [(Air c1 c2 t)] 
      | (c1 == c4) && (c2 == c3) = [(Air c1 c2 t)] 
      | otherwise    = get_conn xs c3 c4 
get_conn ((Rail c1 c2 t):xs) c3 c4 
      | (c1 == c3) && (c2 == c4) = [(Air c1 c2 t)] 
      | (c1 == c4) && (c2 == c3) = [(Air c1 c2 t)] 
      | otherwise    = get_conn xs c3 c4 

-- Überprüft ob eine besuchbare Connection exestiert 
visit :: Connections -> Country -> Countries -> Bool 
visit [] _ _ = False 
visit ((Air c1 c2 _):xs) c visited 
       | (c1 == c) = if (c2 `elem` visited) then (visit xs c visited) else True 
       | (c2 == c) = if (c1 `elem` visited) then (visit xs c visited) else True 
       | otherwise = visit xs c visited 
visit ((Sea c1 c2 _):xs) c visited 
       | (c1 == c) = if (c2 `elem` visited) then (visit xs c visited) else True 
       | (c2 == c) = if (c1 `elem` visited) then (visit xs c visited) else True 
       | otherwise = visit xs c visited 
visit ((Rail c1 c2 _):xs) c visited 
       | (c1 == c) = if (c2 `elem` visited) then (visit xs c visited) else True 
       | (c2 == c) = if (c1 `elem` visited) then (visit xs c visited) else True 
       | otherwise = visit xs c visited 
visit ((Road c1 c2 _):xs) c visited 
       | (c1 == c) = if (c2 `elem` visited) then (visit xs c visited) else True 
       | (c2 == c) = if (c1 `elem` visited) then (visit xs c visited) else True 

這一次我現在寫的:

yieldFastestRoute :: Connections -> Country -> Country -> Itinerary 

Dijkst RA算法: http://en.wikipedia.org/wiki/Dijkstra%27s_algorithm

我的第一種方法是這樣的:(正如我所說的,我與getallRoutes問題)

yieldFastestRoute :: Connections -> Country -> Country -> Itinerary 
yieldFastestRoute cons start targ 
      |(isRoute start targ == False) = NoRoute 
      |otherwise     = (Route (getFastest (getAllRoutes cons start targ)) (sumTT (getFastest (getAllRoutes cons start targ)))) 

-- Liefert alle Routen zwischen zwei Ländern 
getAllRoutes :: Connections -> Country -> Country -> [Connections] 

-- Liefert aus einer Reihe von Connections die schnellste zurück 
getFastest :: [Connections] -> Connections 
getFastest (x:xs) = if ((sumTT x) < sumTT (getFastest xs) || null (getFastest xs)) then x else (getFastest xs) 

sumTT :: Connections -> TravelTime 
sumTT []     = 0 
sumTT ((Air _ _ t): xs) = t ++ sumTT xs 
sumTT ((Rail _ _ t): xs) = t ++ sumTT xs 
sumTT ((Road _ _ t): xs) = t ++ sumTT xs 
sumTT ((Sea _ _ t): xs) = t ++ sumTT xs 

我基本上想知道什麼是最好的方式在Haskell實現Dijkstra算法,或者如果還有另一種方法可以遵循。

+4

1.什麼是Dijkstra算法?向我們展示你實施它的嘗試。 3.說明實施它的哪一部分你覺得很困難。 – dave4420

+0

我想如果theres在haskell中實現dijstra並不是一個極端困難的方式,或者如果有一些更容易的方法來解決問題: http://en.wikipedia.org/wiki/Dijkstra%27s_algorithm –

+0

我想這個問題會如果你專注於如何創建適當的圖形數據結構,那麼應該更好地回答。在那之後,實施Dijkstra應該不難。此外,您還有大量的代碼,並且有點難以吞嚥,特別是德語註釋 – hugomg

回答

8

有是由 安德魯戈德堡和西蒙佩頓瓊斯:http://www.ukuug.org/events/agm2010/ShortestPath.pdf

在編寫任何代碼之前,它幫助我理解了這個問題。它很好地解釋了Dijkstra的算法,之後你會發現很容易實現。它還對原始算法進行了各種改進,最有可能激發你的靈感,激發了我的靈感。

+1

你能在答案中包含相關的代碼/位嗎? –

6

你似乎已經編碼算法

這裏的很大一部分是由馬丁·Erwig Haskell中的一個項目,可能有助於給你一些想法

-- SP.hs -- Dijkstra's Shortest Path Algorithm (c) 2000 by Martin Erwig 
module SP (
    spTree,spLength,sp,  -- shortest paths 
    dijkstra 
) where 

import qualified Heap as H 
import Graph 
import RootPath 
expand :: Real b => b -> LPath b -> Context a b -> [H.Heap (LPath b)] 
expand d p (_,_,_,s) = map (\(l,v)->H.unit ((v,l+d):p)) s 
dijkstra :: Real b => H.Heap (LPath b) -> Graph a b -> LRTree b 
dijkstra h g | H.isEmpty h || isEmpty g = [] 
dijkstra h g = 
    case match v g of 
     (Just c,g') -> p:dijkstra (H.mergeAll (h':expand d p c)) g' 
     (Nothing,g') -> dijkstra h' g' 
    where ([email protected]((v,d):_),h') = H.splitMin h 

spTree :: Real b => Node -> Graph a b -> LRTree b 
spTree v = dijkstra (H.unit [(v,0)]) 
spLength :: Real b => Node -> Node -> Graph a b -> b 
spLength s t = getDistance t . spTree s 
sp :: Real b => Node -> Node -> Graph a b -> Path 
sp s t = map fst . getLPath t . spTree s 

其餘modules are here