-1
A
回答
1
是的,這是爲O(n )。
外循環將執行n
次。內循環平均執行n/2
次。將內部循環和外部循環的複雜度相乘得到O(n * n/2)
,即O(n )。
相關問題
- 1. 嵌套在while循環中的for循環的時間複雜度是多少?
- 2. 以下嵌套循環的時間複雜度是多少?
- 3. 時間複雜度:while循環嵌套for循環[java]
- 4. 這個循環的時間複雜度是多少?
- 5. 嵌套循環的時間複雜度
- 6. 嵌套循環的時間複雜度
- 7. 時間複雜度(嵌套循環)
- 8. 嵌套循環時間複雜度
- 9. 算法時間複雜度分析(三個嵌套for循環)
- 10. 這些循環1和2的時間複雜度是多少
- 11. 計算嵌套for循環的時間複雜度
- 12. 依賴嵌套for循環的時間複雜度?
- 13. 特定嵌套for循環的時間複雜度
- 14. 下面的嵌套循環代碼的時間複雜度是多少?
- 15. 以下嵌套循環依賴關係的時間複雜度是多少?
- 16. Big-O時間複雜度,嵌套for while while循環
- 17. 這個嵌套三重for循環的複雜性是什麼?
- 18. 這個循環的時間複雜度
- 19. 減少嵌套for循環的時間
- 20. 減少循環的時間複雜度
- 21. 以下循環的時間複雜度是多少
- 22. 循環的時間複雜度是多少?
- 23. 各種嵌套for循環的時間複雜性
- 24. 算法複雜-嵌套for循環
- 25. 如何找到這3個嵌套循環的時間複雜度?
- 26. j <= i條件的嵌套for循環的時間複雜度
- 27. 嵌套while循環的時間複雜度?
- 28. 計算嵌套循環的時間複雜度
- 29. 奇怪嵌套循環的時間複雜度
- 30. 關於各種嵌套for循環算法的時間複雜度
第二個循環如何執行n/2次?它會執行n-1次。不是嗎?如果是的話請解釋一下。 – Avenger
第一次進入外循環'i'等於'n',所以內循環根本不執行。下一次'i'等於'n-1',所以'x ++'被執行一次。然後2次,3次,4次,直到'i = 1',然後執行'n-1'次。數字的平均值爲1,2 ...,n-1的數量級爲O(n/2)。 – kfx
另一種觀察方式是1,2,...,n-1的總和具有n平方項,因此階數爲O(n^2) –