評論部分沒有足夠的空間。沒有太多不同,以什麼@DrV寫的,但也許更多的天文數字般的傾斜:
import random
import numpy as np
import matplotlib.pyplot as plt
def log_OIII_Hb_NII(log_NII_Ha, eps=0):
return 1.19 + eps + 0.61/(log_NII_Ha - eps - 0.47)
# Make some fake measured NII_Ha data
iternum = 100
# Ranged -2.1 to 0.4:
Measured_NII_Ha = np.array([random.random()*2.5-2.1 for i in range(iternum)])
# Ranged -1.5 to 1.5:
Measured_OIII_Hb = np.array([random.random()*3-1.5 for i in range(iternum)])
# For our measured x-value, what is our cut-off value
Measured_Predicted_OIII_Hb = log_OIII_Hb_NII(Measured_NII_Ha)
# Now compare the cut-off line to the measured emission line fluxes
# by using numpy True/False arrays
#
# i.e., x = numpy.array([1,2,3,4])
# >> index = x >= 3
# >> print(index)
# >> numpy.array([False, False, True, True])
# >> print(x[index])
# >> numpy.array([3,4])
Above_Predicted_Red_Index = Measured_OIII_Hb > Measured_Predicted_OIII_Hb
Below_Predicted_Blue_Index = Measured_OIII_Hb < Measured_Predicted_OIII_Hb
# Alternatively, you can invert Above_Predicted_Red_Index
# Make the cut-off line for a range of values for plotting it as
# a continuous line
Predicted_NII_Ha = np.linspace(-3.0, 0.35)
Predicted_log_OIII_Hb_NII = log_OIII_Hb_NII(Predicted_NII_Ha)
fig = plt.figure(0)
ax = fig.add_subplot(111)
# Plot the modelled cut-off line
ax.plot(Predicted_NII_Ha, Predicted_log_OIII_Hb_NII, color="black", lw=2)
# Plot the data for a given colour
ax.errorbar(Measured_NII_Ha[Above_Predicted_Red_Index], Measured_OIII_Hb[Above_Predicted_Red_Index], fmt="o", color="red")
ax.errorbar(Measured_NII_Ha[Below_Predicted_Blue_Index], Measured_OIII_Hb[Below_Predicted_Blue_Index], fmt="o", color="blue")
# Make it aesthetically pleasing
ax.set_ylabel(r"$\rm \log([OIII]/H\beta)$")
ax.set_xlabel(r"$\rm \log([NII]/H\alpha)$")
plt.show()
你可以做的是數據列表分爲兩個列表,根據其在所限定的兩個平面之中分界線。完成之後,您可以分別確定每組數據的顏色(和大小,...)。 – markusian