直接使用鄰接矩陣提供了重大改進。
# sparse adjacency-matrix calculation of indirect neighbors -------------------
diff_sparse_mat <- function(A, B) {
# Difference between sparse matrices.
# Input: sparse matrices A and B
# Output: C = (A & !B), using element-wise diffing, treating B as logical
stopifnot(identical(dim(A), dim(B)))
A <- as(A, "generalMatrix")
AT <- as.data.table(summary(as(A, "TsparseMatrix")))
setkeyv(AT, c("i", "j"))
B <- drop0(B)
B <- as(B, "generalMatrix")
BT <- as.data.table(summary(as(B, "TsparseMatrix")))
setkeyv(BT, c("i", "j"))
C <- AT[!BT]
if (length(C) == 2) {
return(sparseMatrix(i = C$i, j = C$j, dims = dim(A)))
} else {
return(sparseMatrix(i = C$i, j = C$j, x = C$x, dims = dim(A)))
}
}
distance2_peers <- function(adj_mat) {
# Returns a matrix of indirect neighbors, excluding the diagonal
# Input: adjacency matrix A (assumed symmetric)
# Output: (A %*% A & !A) with zero diagonal
indirect <- forceSymmetric(adj_mat %*% adj_mat)
indirect <- diff_sparse_mat(indirect, adj_mat) # excl. direct neighbors
indirect <- diff_sparse_mat(indirect, Diagonal(n = dim(indirect)[1])) # excl. diag.
return(indirect)
}
爲鄂爾多斯仁義例如,在半分鐘現在的10^7網絡,而不是10^5可以分析:
N <- 10^(1:7)
runtimes <- function(N) {
g <- erdos.renyi.game(N, 1/N, directed = FALSE)
system.time(distance2_peers(as_adjacency_matrix(g)))[3]
}
runtime <- sapply(N, runtimes)
qplot(log10(N), runtime, geom = "line")

所得矩陣containst在(i,j)從i到j的長度爲2的路徑的數量(不包括包含我自己的路徑)。