我最近發現,類型孔與證明上的模式匹配相結合,在Haskell中提供了非常好的Agda類體驗。例如:不規則的孔類型分辨率
{-# LANGUAGE
DataKinds, PolyKinds, TypeFamilies,
UndecidableInstances, GADTs, TypeOperators #-}
data (==) :: k -> k -> * where
Refl :: x == x
sym :: a == b -> b == a
sym Refl = Refl
data Nat = Zero | Succ Nat
data SNat :: Nat -> * where
SZero :: SNat Zero
SSucc :: SNat n -> SNat (Succ n)
type family a + b where
Zero + b = b
Succ a + b = Succ (a + b)
addAssoc :: SNat a -> SNat b -> SNat c -> (a + (b + c)) == ((a + b) + c)
addAssoc SZero b c = Refl
addAssoc (SSucc a) b c = case addAssoc a b c of Refl -> Refl
addComm :: SNat a -> SNat b -> (a + b) == (b + a)
addComm SZero SZero = Refl
addComm (SSucc a) SZero = case addComm a SZero of Refl -> Refl
addComm SZero (SSucc b) = case addComm SZero b of Refl -> Refl
addComm [email protected](SSucc a) [email protected](SSucc b) =
case addComm a sb of
Refl -> case addComm b sa of
Refl -> case addComm a b of
Refl -> Refl
的真正好處是,我可以用一個類型孔替換Refl -> exp
結構的右手邊,和我的洞目標類型與證據更新,幾乎與該rewrite
形式在Agda。
但是,有時孔,只不過沒有更新:
(+.) :: SNat a -> SNat b -> SNat (a + b)
SZero +. b = b
SSucc a +. b = SSucc (a +. b)
infixl 5 +.
type family a * b where
Zero * b = Zero
Succ a * b = b + (a * b)
(*.) :: SNat a -> SNat b -> SNat (a * b)
SZero *. b = SZero
SSucc a *. b = b +. (a *. b)
infixl 6 *.
mulDistL :: SNat a -> SNat b -> SNat c -> (a * (b + c)) == ((a * b) + (a * c))
mulDistL SZero b c = Refl
mulDistL (SSucc a) b c =
case sym $ addAssoc b (a *. b) (c +. a *. c) of
-- At this point the target type is
-- ((b + c) + (n * (b + c))) == (b + ((n * b) + (c + (n * c))))
-- The next step would be to update the RHS of the equivalence:
Refl -> case addAssoc (a *. b) c (a *. c) of
Refl -> _ -- but the type of this hole remains unchanged...
而且,即使目標類型並不一定證明裏面排隊,如果我從阿格達整件事粘貼仍檢查罰款:
mulDistL' :: SNat a -> SNat b -> SNat c -> (a * (b + c)) == ((a * b) + (a * c))
mulDistL' SZero b c = Refl
mulDistL' (SSucc a) b c = case
(sym $ addAssoc b (a *. b) (c +. a *. c),
addAssoc (a *. b) c (a *. c),
addComm (a *. b) c,
sym $ addAssoc c (a *. b) (a *. c),
addAssoc b c (a *. b +. a *. c),
mulDistL' a b c
) of (Refl, Refl, Refl, Refl, Refl, Refl) -> Refl
你有什麼想法解釋爲什麼會發生這種情況(或者我如何以強有力的方式進行證明重寫)?
你不期待多少?平等證明上的模式匹配是建立(雙向)平等。目前還不清楚您希望將其應用於目標類型的方向和方向。例如,你可以省略'mulDistL''中的'sym'調用,你的代碼仍然會檢查。 – kosmikus
很可能我期待太多。但是,在許多情況下,它的工作方式與Agda一樣,因此找出行爲的規律性仍然很有用。儘管如此,我並不樂觀,因爲這件事可能與類型檢查者的腸子有很深的關係。 –
這與你的問題有點正交,但你可以通過使用一組等同推理組合器àla Agda來證明這些證明。參看[這個概念驗證](https://github.com/gallais/potpourri/blob/master/haskell/proofs/NatProofs.hs) – gallais