3
我對R比較新。我想知道如何使用「調查」包(http://r-survey.r-forge.r-project.org/survey/)來分析加權樣本的多重回答問題?棘手的是,可以勾選多個響應,以便將響應存儲在多個列中。如何使用R調查軟件包分析加權樣本中的多個回答問題?
例子:
我有500名受訪者誰是隨機來自全國10個地區得出的調查數據。假設被問到的主要問題是(存儲在H1_AreYouHappy列中):'你快樂嗎?' - 是/否/不知道
被訪者被問到後續問題:'你爲什麼(快樂)? 這是一個選擇題,可以選擇多個答案框,因此答案被存儲在單獨的列中,例如:
H1Yes_Why1(0/1,即選擇框打勾或未打勾) - '因爲economny「;
H1Yes_Why2(0/1) - '因爲我健康';
H1Yes_Why3(0/1) - '因爲我的社交生活'。
下面是根據各地區
library(survey)
# Create an unweighted survey object
mySurvey.unweighted <- svydesign(ids=~1, data=myDataFrame)
# Choose which variable contains the sample distribution to be weighted by
sample.distribution <- list(~District)
# Specify (from Census data) how often each level occurs in the population
population.distribution <- data.frame(District = c('Green', 'Red','Orange','Blue','Purple','Grey','Black','Yellow','White','Lavender'),
freq = c(0.1824885, 0.0891206, 0.1381343, 0.1006533, 0.1541269, 0.0955853, 0.0268172, 0.0398353, 0.0809459, 0.0922927))
# Apply the weights
mySurvey.rake <- rake(design = mySurvey.unweighted, sample.margins=sample.distribution, population.margins=list(population.distribution))
# Calculate the weighted mean for the main question
svymean(~H1_AreYouHappy, mySurvey.rake)
# How can I calculate the WEIGHTED means for the multiple choice - multiple response follow-up question?
的事實上的人口規模我的假數據集
districts <- c('Green', 'Red','Orange','Blue','Purple','Grey','Black','Yellow','White','Lavender')
myDataFrame <- data.frame(H1_AreYouHappy=sample(c('Yes','No','Dont Know'),500,rep=TRUE),
H1Yes_Why1 = sample(0:1,500,rep=TRUE),
H1Yes_Why2 = sample(0:1,500,rep=TRUE),
H1Yes_Why3 = sample(0:1,500,rep=TRUE),
District = sample(districts,500,rep=TRUE), stringsAsFactors=TRUE)
我使用的R「調查」包申請後分層權重我如何計算多項選擇問題的加權平均值(即跨越0/1響應列)?
如果我想它不加權的,我可以使用此功能橫跨符合我的前綴「H1Yes_Why」
multipleResponseFrequencies = function(data, question.prefix) {
# Find the columns with the questions
a = grep(question.prefix, names(data))
# Find the total number of responses
b = sum(data[, a] != 0)
# Find the totals for each question
d = colSums(data[, a] != 0)
# Find the number of respondents
e = sum(rowSums(data[,a]) !=0)
# d + b as a vector. This is the overfall frequency
f = as.numeric(c(d, b))
result <- data.frame(question = c(names(d), "Total"),
freq = f,
percent = (f/b)*100,
percentofcases = (f/e)*100)
result
}
multipleResponseFrequencies(myDataFrame, 'H1Yes_Why')
任何幫助,將不勝感激所有列計算的頻率。
你可能會更好,通過分析一個例子,在工作http://asdfree.com/ –
@AnthonyDamico請問你的例子告訴我們如何分析多個響應問題?任何示例? – SmallChess