1
此刻我嘗試使用Tensorflow的新Estimator API在自定義圖像數據集上訓練自動編碼器。Tensorflow Estimator API以eval模式保存圖像摘要
到目前爲止一切正常。我遇到的唯一問題是當模型處於評估模式時,將輸入和輸出圖像保存爲摘要。我在列車模式下創建的所有圖像摘要均已妥善保存並顯示在Tensorboard中。
這裏是我的代碼:
def model_fn_autoencoder(features, labels, mode, params):
is_training = mode == ModeKeys.TRAIN
# Define model's architecture
logits = architecture_autoencoder(features, is_training=is_training)
# Loss, training and eval operations are not needed during inference.
loss = None
train_op = None
#eval_metric_ops = {}
if mode != ModeKeys.INFER:
loss = tf.reduce_mean(tf.square(logits - features))
train_op = get_train_op_fn(loss, params)
#eval_metric_ops = get_eval_metric_ops(labels, predictions)
if mode == ModeKeys.TRAIN:
for i in range(10):
tf.summary.image("Input/Train/" + str(i), tf.reshape(features[i],[1, 150, 150, 3]))
tf.summary.image("Output/Train/" + str(i), tf.reshape(logits[i],[1, 150, 150, 3]))
if mode == ModeKeys.EVAL:
for i in range(10):
tf.summary.image("Input/Eval/" + str(i), tf.reshape(features[i], [1, 150, 150, 3]))
tf.summary.image("Output/Eval/" + str(i), tf.reshape(logits[i], [1, 150, 150, 3]))
return tf.estimator.EstimatorSpec(
mode=mode,
predictions=logits,
loss=loss,
train_op=train_op,
#eval_metric_ops=eval_metric_ops
也許有人可以告訴我什麼,我做錯了什麼?
更新 下面是估計和實驗創作功能:
估算:
def get_estimator(run_config, params):
return tf.estimator.Estimator(
model_fn=model_fn_autoencoder, # First-class function
params=params, # HParams
config=run_config # RunConfig
)
實驗:
def experiment_fn(run_config, params):
run_config = run_config.replace(save_checkpoints_steps=params.min_eval_frequency)
estimator = get_estimator(run_config, params)
tf_path = 'path/to/tfrecord'
train_file = 'Crops-Faces-Negtives-150-150.tfrecord'
val_file = 'Crops-Faces-Negtives-150-150-TEST.tfrecord'
tfrecords_train = [os.path.join(tf_path, train_file)]
tfrecords_test = [os.path.join(tf_path, val_file)]
# Setup data loaders
train_input_fn = get_train_inputs(batch_size=128, tfrecord_files=tfrecords_train)
eval_input_fn = get_train_inputs(batch_size=128, tfrecord_files=tfrecords_test)
# Define the experiment
experiment = tf.contrib.learn.Experiment(
estimator=estimator, # Estimator
train_input_fn=train_input_fn, # First-class function
eval_input_fn=eval_input_fn, # First-class function
train_steps=params.train_steps, # Minibatch steps
min_eval_frequency=params.min_eval_frequency, # Eval frequency
eval_steps=10 # Number of eval batches
)
return experiment
你能更新你的代碼,包括你怎麼稱呼的估計? – Mingxing
對不起,我添加了估算器和實驗創建的代碼。 –
TF團隊正在努力增加一種方法來在eval模式下保存摘要,就像您在EstimatorSpec構造函數中使用'training_hooks'進行訓練模式一樣。看看這裏的github問題:https://github.com/tensorflow/tensorflow/issues/14042 –