2016-04-14 117 views
0

我對Python和SKLearn相當陌生。我試圖做一個簡單的分類器,但我遇到了一個問題。我一直在關注一些不同的教程,但在嘗試使用.fit方法時出現錯誤。我是這個概念的新手,已經嘗試過這些文檔,但發現很難理解,任何人都可以幫助我解決錯誤,或者指引我朝着正確的方向發展。Python分類器Sklearn

我的錯誤背後的想法是,值超出了範圍爲D型,因爲我已經改變了所有的遺漏值或NaN值,但錯誤依然出現

代碼

def main(): 
setup_files() 

imputer = Imputer() 

#the training data minus id and type: 
t_num_data = load_csv(training_set_file_path, range(1, 17)) 
t_num_data_imputed = imputer.fit_transform(t_num_data) 
print(t_num_data_imputed) 

#the training type column 
t_type_col = load_csv(training_set_file_path, 17, dtype=np.dtype((str, 5))) 
#the query data minus id and type: 
q_data = load_csv(queries_file_path, range(1, 17)) 
#the query id column 
q_id = load_csv(queries_file_path, 0, dtype=np.dtype((str, 10))) 


#fit data above to DTC and predict import 
model = tree.DecisionTreeClassifier(criterion='entropy') 
model.fit_transform(t_num_data, t_type_col) 
predictions = model.predict(q_data) 


#output the predictions: 
with open(solutions_file_path, 'w') as f: 
    for i in range(len(predictions)): 
     f.write("{},{}\n".format(q_id[i], predictions[i])) 


#fit data above to DTC and predict import 
model = tree.DecisionTreeClassifier(criterion='entropy') 
model.fit(t_num_data, t_type_col) 
predictions = model.predict(q_data) 


#output the predictions: 
with open(solutions_file_path, 'w') as f: 
    for i in range(len(predictions)): 
     f.write("{},{}\n".format(q_id[i], predictions[i])) 

錯誤

Traceback (most recent call last): 
    File "/Users/Rory/Desktop/classifier.py", line 71, in <module> 
main() 
    File "/Users/Rory/Desktop/classifier.py", line 60, in main 
model.fit_transform(t_num_data, t_type_col) 
    File "/Users/Rory/anaconda/lib/python2.7/site-packages/sklearn/base.py", line 458, in fit_transform 
return self.fit(X, y, **fit_params).transform(X) 
    File "/Users/Rory/anaconda/lib/python2.7/site-packages/sklearn/tree/tree.py", line 154, in fit 
    X = check_array(X, dtype=DTYPE, accept_sparse="csc") 
    File "/Users/Rory/anaconda/lib/python2.7/site-packages/sklearn/utils/validation.py", line 398, in check_array 
_assert_all_finite(array) 
    File "/Users/Rory/anaconda/lib/python2.7/site-packages/sklearn/utils/validation.py", line 54, in _assert_all_finite 
" or a value too large for %r." % X.dtype) 
ValueError: Input contains NaN, infinity or a value too large for dtype('float32'). 
+0

錯誤說明了這一切。你的't_num_data'有inf或nan值。嘗試打印最小/最大 –

+0

,是否有一個簡單的修復這個或做或它是否在數據本身? – JJSmith

+0

@imaluengo當我打印最大值和最小值時,我得到了兩個 – JJSmith

回答

1

的問題是你的NaN值。有很多方法可以估算NaNs。你可以嘗試:

t_num_data.fillna(0) 

這將填補所有缺失值爲0,然後你的分類器將工作,但可能不是很準確。還有其他的方法,採取平均值,基於最近的鄰居估計等,但這應該讓你的代碼現在工作。