2015-11-14 60 views
5

我怎麼會去轉換樹列表進行反向下三角矩陣R中

m = list(1,2:3,4:6,7:10) 

 [,1] [,2] [,3] [,4] 
[1,] 0 0 0 10 
[2,] 0 0 6 9 
[3,] 0 3 5 8 
[4,] 1 2 4 7 

一個想法或一些指導的讚賞!感謝您的耐心,以防問題太幼稚或需要更多信息(我會很樂意提供)。

回答

4

1)下方lapply追加n零到的m各組分和sapply需要的m各成分的第一n元件重塑結果成一個矩陣。最後,我們顛倒結果矩陣的行的順序。這個工程即使m沒有定義一個三角矩陣:

n <- length(m) 
sapply(lapply(m, c, numeric(n)), head, n)[n:1, ] 

,並提供:

 [,1] [,2] [,3] [,4] 
[1,] 0 0 0 10 
[2,] 0 0 6 9 
[3,] 0 3 5 8 
[4,] 1 2 4 7 

如果n可以爲零,然後代替n:1使用rev(seq_len(n))

2)一個簡單的sapply也適用。它預先考慮的m每個扭轉組件與零的適當數量和重塑成一個矩陣:

sapply(m, function(v) c(numeric(n - length(v)), rev(v))) 
7

不適卡盤的基R法向前

# Create matrix with dimensions defined by the length of your list 
mat <- matrix(0, length(m), length(m)) 
# Fill in desired order 
mat[upper.tri(mat, TRUE)] <- unlist(m) 
# Order rows 
mat[length(m):1, ] 
+0

因爲你的答案好100倍。數字回到數字並不是真正的應該做的事情 –

+0

是的,也許,但我認爲它的有用介紹了隱藏在包中的鮮爲人知的函數(否則ID永遠不會了解它們!) – user20650

1

這裏還有一個值得考慮的選擇。這使用lengths來確定最長向量的長度,然後使用vapply,該自動簡化爲矩陣(如sapply,但更快)。

len <- max(lengths(m))   ## What's the longest vector in m? 
vapply(m, function(x) { 
    length(x) <- len    ## Make all vectors the same length 
    rev(replace(x, is.na(x), 0)) ## Replace NA with 0 and reverse 
}, numeric(len)) 
#  [,1] [,2] [,3] [,4] 
# [1,] 0 0 0 10 
# [2,] 0 0 6 9 
# [3,] 0 3 5 8 
# [4,] 1 2 4 7 
1

如果使用稀疏矩陣(從Matrix包),這些也將工作:

> N <- lengths(m) 
> sparseMatrix(i=1+length(m)-sequence(N), j=rep.int(N,N), x=unlist(m)) 
4 x 4 sparse Matrix of class "dgCMatrix" 

[1,] . . . 10 
[2,] . . 6 9 
[3,] . 3 5 8 
[4,] 1 2 4 7 

這幾乎是一樣的成語爲上三角矩陣:

> sparseMatrix(i=sequence(N), j=rep.int(N,N), x=unlist(m)) 
4 x 4 sparse Matrix of class "dgCMatrix" 

[1,] 1 2 4 7 
[2,] . 3 5 8 
[3,] . . 6 9 
[4,] . . . 10