0
我試圖在M2(R)中實現基於FFT的乘法算法。基本上是一種算法,它將輸入的兩個元素作爲矩陣給出元素,並構建乘積多項式。但是,即使該算法應該起作用,因爲它看起來與我之前在常規編號上編寫的版本完全相同,但它沒有。係數總是偏離一點。M2(R)中的多項式乘法?
我還沒有在M2(C)中找到關於統一根的文章,但我發現(在紙上)選擇eps =((cos(2PI/n),i sin(2PI/n)) ,(i sin(2PI/n),cos(2PI/n))),我得到一個很好的循環。
我的方法有什麼問題嗎?
下面是代碼:
struct FFT {
PolyC To, Aux[17][2], Res[17][2], AC, BC, ResC, ResD, ArgA, ArgB;
void fft(PolyC V, var depth, var n, PolyC To, MatC step) {
if(n == 1) {
To[0] = V[0];
} else {
MatC eps = matCHelper.I2;
//We "split" the poly in 2
for(var i=0; i<n; i++)
Aux[depth+1][i&1][i>>1] = V[i];
//We recursively apply FFT to the components
fft(Aux[depth+1][0], depth+1, n/2, Res[depth+1][0], step*step);
fft(Aux[depth+1][1], depth+1, n/2, Res[depth+1][1], step*step);
//We compute the result for the n roots
for(var i=0; i<n/2; i++) {
To[i] = Res[depth+1][0][i] + eps * Res[depth+1][1][i];
To[n/2+i] = Res[depth+1][0][i] - eps * Res[depth+1][1][i];
eps = eps * step;
}
}
}
void FFTMultiply(Poly Res, Poly A, Poly B, var n1, var n2) {
var M;
for(M = 1; M <= 2*n1 || M <= 2*n2; M <<= 1);
for(var i=0; i<n1; i++) ArgA[i] = A[i];
for(var i=n1; i<M; i++) ArgA[i] = matCHelper.O2;
for(var i=0; i<n2; i++) ArgB[i] = B[i];
for(var i=n2; i<M; i++) ArgB[i] = matCHelper.O2;
MatC step(Complex(cos(2*PI/M), 0) , Complex(0, sin(2*PI/M)),
Complex(0, sin(2*PI/M)) , Complex(cos(2*PI/M), 0));
fft(ArgA, 0, M, AC, step);
fft(ArgB, 0, M, BC, step);
for(var i=0; i<M; i++) {
RezC[i] = AC[i] * BC[i];
}
step.b = -step.b;
step.c = -step.c;
fft(RezC, 0, M, RezD, step);
for(var i=0; i<M; i++) {
// Now I divided everything by M and copied every element of ResD to Res modulo some number
}
}
};
DFFT使用[NTT](http://stackoverflow.com/q/18577076/2521214),如果可以它具有相同的屬性,但所有的計算都是整數(可以使用固定如果動態範圍不是太高,則指向浮點數),如果不能使用NTT,請嘗試使用更高精度的變量。這實際上不是我的專業領域,所以要以偏見來處理我的評論(相反,請將其視爲提示) – Spektre