1
計算存儲器帶寬如何計算GPU存儲器帶寬與下式給出:怪異的結果從輸出nvprof
- 數據樣本的大小(以
Gb
)。 - 內核執行時間(nvprof輸出)。
GPU:gtx 1050 ti
Cuda的:8.0
OS:Windows 10
IDE:Visual studio 2015
通常我會用這個公式:bandwidth [Gb/s] = data_size [Gb]/average_time [s]
。
但是,當我使用get_mem_kernel()
內核的上述公式時,我得到了錯誤的結果:441,93 [Gb/s]
。
我認爲這個結果是錯誤的,因爲在gtx 1050 ti
的技術規格表示全局存儲器帶寬爲112 [Gb\s]
。
我在哪裏犯了一個錯誤,或者有什麼我不明白的地方?
樣品的編號:
// cpp libs:
#include <iostream>
#include <sstream>
#include <fstream>
#include <iomanip>
#include <stdexcept>
// cuda libs:
#include <cuda_runtime.h>
#include <device_launch_parameters.h>
#define ERROR_CHECK(CHECK_) if (CHECK_ != cudaError_t::cudaSuccess) { std::cout << "cuda error" << std::endl; throw std::runtime_error("cuda error"); }
using data_type = double;
template <typename T> constexpr __forceinline__
T div_s(T dividend, T divisor)
{
using P = double;
return static_cast <T> (static_cast <P> (dividend + divisor - 1)/static_cast <P> (divisor));
}
__global__
void set_mem_kernel(const unsigned int size, data_type * const in_data)
{
int idx = blockIdx.x * blockDim.x + threadIdx.x;
if (idx < size)
{
in_data[idx] = static_cast <data_type> (idx);
}
}
__global__
void get_mem_kernel(const unsigned int size, data_type * const in_data)
{
int idx = blockIdx.x * blockDim.x + threadIdx.x;
data_type val = 0;
if (idx < size)
{
val = in_data[idx];
}
}
struct quit_program
{
public:
~quit_program()
{
try
{
ERROR_CHECK(cudaDeviceReset());
}
catch (...) {}
}
} quit;
int main()
{
unsigned int size = 12500000; // 100 mb;
size_t byte = size * sizeof(data_type);
dim3 threads (256, 1, 1);
dim3 blocks (div_s(size, threads.x), 1, 1);
std::cout << size << std::endl;
std::cout << byte << std::endl;
std::cout << std::endl;
std::cout << threads.x << std::endl;
std::cout << blocks.x << std::endl;
std::cout << std::endl;
// data:
data_type * d_data = nullptr;
ERROR_CHECK(cudaMalloc(&d_data, byte));
for (int i = 0; i < 20000; i++)
{
set_mem_kernel <<<blocks, threads>>> (size, d_data);
ERROR_CHECK(cudaDeviceSynchronize());
ERROR_CHECK(cudaGetLastError());
get_mem_kernel <<<blocks, threads>>> (size, d_data);
ERROR_CHECK(cudaDeviceSynchronize());
ERROR_CHECK(cudaGetLastError());
}
// Exit:
ERROR_CHECK(cudaFree(d_data));
ERROR_CHECK(cudaDeviceReset());
return EXIT_SUCCESS;
}
nvproof結果:
D:\Dev\visual_studio\nevada_test_site\x64\Release>nvprof ./cuda_test.exe
12500000
100000000
256
48829
==10508== NVPROF is profiling process 10508, command: ./cuda_test.exe
==10508== Warning: Unified Memory Profiling is not supported on the current configuration because a pair of devices without peer-to-peer support is detected on this multi-GPU setup. When peer mappings are not available, system falls back to using zero-copy memory. It can cause kernels, which access unified memory, to run slower. More details can be found at: http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#um-managed-memory
==10508== Profiling application: ./cuda_test.exe
==10508== Profiling result:
Time(%) Time Calls Avg Min Max Name
81.12% 19.4508s 20000 972.54us 971.22us 978.32us set_mem_kernel(unsigned int, double*)
18.88% 4.52568s 20000 226.28us 224.45us 271.14us get_mem_kernel(unsigned int, double*)
==10508== API calls:
Time(%) Time Calls Avg Min Max Name
97.53% 26.8907s 40000 672.27us 247.98us 1.7566ms cudaDeviceSynchronize
1.61% 443.32ms 40000 11.082us 5.8340us 183.43us cudaLaunch
0.51% 141.10ms 1 141.10ms 141.10ms 141.10ms cudaMalloc
0.16% 43.648ms 1 43.648ms 43.648ms 43.648ms cudaDeviceReset
0.08% 22.182ms 80000 277ns 0ns 121.07us cudaSetupArgument
0.06% 15.437ms 40000 385ns 0ns 24.433us cudaGetLastError
0.05% 12.929ms 40000 323ns 0ns 57.253us cudaConfigureCall
0.00% 1.1932ms 91 13.112us 0ns 734.09us cuDeviceGetAttribute
0.00% 762.17us 1 762.17us 762.17us 762.17us cudaFree
0.00% 359.93us 1 359.93us 359.93us 359.93us cuDeviceGetName
0.00% 8.3880us 1 8.3880us 8.3880us 8.3880us cuDeviceTotalMem
0.00% 2.5520us 3 850ns 364ns 1.8230us cuDeviceGetCount
0.00% 1.8240us 3 608ns 365ns 1.0940us cuDeviceGet
CUDA Samples\v8.0\1_Utilities\bandwidthTest
結果:
[CUDA Bandwidth Test] - Starting...
Running on...
Device 0: GeForce GTX 1050 Ti
Quick Mode
Host to Device Bandwidth, 1 Device(s)
PINNED Memory Transfers
Transfer Size (Bytes) Bandwidth(MB/s)
33554432 11038.4
Device to Host Bandwidth, 1 Device(s)
PINNED Memory Transfers
Transfer Size (Bytes) Bandwidth(MB/s)
33554432 11469.6
Device to Device Bandwidth, 1 Device(s)
PINNED Memory Transfers
Transfer Size (Bytes) Bandwidth(MB/s)
33554432 95214.0
Result = PASS
NOTE: The CUDA Samples are not meant for performance measurements. Results may vary when GPU Boost is enabled.
在Samples/1_Utilities文件夾中運行'bandwidthTest',爲您估算卡的實際情況。代碼也不難理解,會給你一些指示。 – zindarod
你可能會碰到其中一個緩存,這意味着你會感受到更高的帶寬。但nvprof提供的指標可能會給你一個比任何你可能試圖計算自己更好的衡量指標。 [這](https://stackoverflow.com/questions/37732735/nvprof-option-for-bandwidth/37740119#37740119)可能是有趣的。 –
您正在構建調試項目還是發佈項目?對於發佈項目,您的'get_mem_kernel'不會執行任何會影響正在讀取的數據的全局狀態,因此編譯器可以自由地優化實際負載。您可以通過查看內核反彙編來確認這一點,或向分析器詢問實際獲得的帶寬。 –