2017-05-14 134 views
1

我試圖使用tflearn和我自己的數據。ValueError:無法爲張量u'InputData/X:0',形狀爲'(?,32,32,1)'的形狀(64,32,32)提供值'

我有19748個灰度圖像,我想用我的模型進行訓練。我使用了tflearn的Image_Preloader方法來輸入圖像。所有圖像都轉換成32 * 32大小。但是當我開始訓練過程時,我得到這個錯誤「ValueError:無法提供形狀爲'(?,32,32,1)的Tensor u'InputData/X:0'的形狀值(64,32,32) '「

我已經嘗試了一切在我的知識,但我不能解決它,並有類似的問題在stackoverflow中,但他們沒有爲我工作。

這是我的代碼。

from __future__ import division, print_function, absolute_import 


import tflearn 
import pickle 
from tflearn.layers.core import input_data, dropout, fully_connected 
from tflearn.layers.conv import conv_2d, max_pool_2d 
from tflearn.layers.normalization import local_response_normalization 
from tflearn.layers.estimator import regression 
from time import gmtime, strftime 
from tflearn.data_utils import image_preloader 
import numpy as np 


dataset_file = 'noww.txt' 



X = np.zeros((19748,32,32,1)) 
Y = np.zeros((19748,10)) 

X, Y = image_preloader(dataset_file, image_shape=(32, 32), mode='file', categorical_labels=True, normalize=True) 


network = input_data(shape=[None, 32, 32, 1]) 


network = conv_2d(network, 64, 3, activation='relu') 
network = conv_2d(network, 64, 3, activation='relu') 
network = max_pool_2d(network, 2, strides=2) 

network = conv_2d(network, 128, 3, activation='relu') 
network = conv_2d(network, 128, 3, activation='relu') 
network = max_pool_2d(network, 2, strides=2) 

network = conv_2d(network, 256, 3, activation='relu') 
network = conv_2d(network, 256, 3, activation='relu') 
network = conv_2d(network, 256, 3, activation='relu') 
network = max_pool_2d(network, 2, strides=2) 

network = fully_connected(network, 1024, activation='relu') 
network = dropout(network, 0.5) 
network = fully_connected(network, 1024, activation='relu') 
network = dropout(network, 0.5) 
network = fully_connected(network, 10, activation='softmax') 
network = regression(network, optimizer='rmsprop', 
        loss='categorical_crossentropy', 
        learning_rate=0.0001) 


model = tflearn.DNN(network, checkpoint_path='model_1', 
        max_checkpoints=1, tensorboard_verbose=0) 
model.fit(X, Y, n_epoch=200, shuffle=True, 
      show_metric=True, batch_size=64, snapshot_step=200, 
      snapshot_epoch=False, run_id='model_1') 

請幫忙。

回答

3

錯誤表明Tensorflow不能將具有形狀[64,32,32]的張量放置到形狀爲[?,32,32,1]的另一個張量中,這裏的?表示批量大小。

您的模型無法將批處理數據送入X變量,因爲它們的形狀不同,您應該更改X形狀。

改變這一行X, Y = image_preloader(dataset_file, image_shape=(32, 32), mode='file', categorical_labels=True, normalize=True)

X, Y = image_preloader(dataset_file, image_shape=(None, 32, 32, 1), mode='file', categorical_labels=True, normalize=True)

希望那是有益的。

相關問題