2016-05-15 111 views
2

我想製作一個ConvNet具有與輸入之一相同的輸出大小。所以,我使用TFLearn庫實現了它。因爲我只是想要一個滿足這些目的的簡單示例,所以我只設置一個具有零填充的卷積層,以便與輸入具有相同的輸出大小。以下是代碼:TensorFlow/TFLearn:ValueError:無法提供形狀爲'(?,64)'的張量u'TargetsData/Y:0'形狀(256,400,400)的值。

X = X.reshape([-1, 400, 400, 1]) 
Y = Y.reshape([-1, 400, 400, 1]) 
testX = testX.reshape([-1, 400, 400, 1]) 
testY = testY.reshape([-1, 400, 400, 1]) 
X, mean = du.featurewise_zero_center(X) 
testX = du.featurewise_zero_center(testX, mean) 


# Building a Network 
net = tflearn.input_data(shape=[None, 400, 400, 1]) 
net = tflearn.conv_2d(net, 64, 3, padding='same', activation='relu', bias=False) 
sgd = tflearn.SGD(learning_rate=0.1, lr_decay=0.96, decay_step=300) 
net = tflearn.regression(net, optimizer='sgd', 
        loss='categorical_crossentropy', 
        learning_rate=0.1) 
# Training 
model = tflearn.DNN(net, checkpoint_path='model_network', 
       max_checkpoints=10, tensorboard_verbose=3) 
model.fit(X, Y, n_epoch=100, validation_set=(testX, testY), 
     show_metric=True, batch_size=256, run_id='network_test') 

然而,這些代碼產生

ValueError: Cannot feed value of shape (256, 400, 400) for Tensor u'TargetsData/Y:0', which has shape '(?, 64)' 

我已經搜查,並檢查一些文件的錯誤,但我似乎無法得到這個工作。

+0

我不熟悉的TF API,但'testX'不會'testX = du.featurewise_zero_center(testX,mean)'後面的元組嗎? – erip

+0

@erip對不起,我已經省略了標題部分。該行來自'import tflearn.data_utils as du'。這裏,'tflearn.data_utils'是一個與數據預處理相關的頭文件。 – David

+0

當然,但它返回X,並且意味着高於。在它下面只返回testX。 – erip

回答

1

問題是您的convnet輸出形狀爲(無,64),但是您的目標數據(標籤)的形狀爲(無,400,400)。我不確定你想要用你的代碼做什麼,你想要做一些自動編碼?還是用於分類任務?

對於自動編碼器,下面是MNIST卷積編碼器的汽車,你可以用自己的數據與之相適應並改變input_data形狀:

from __future__ import division, print_function, absolute_import 

import numpy as np 
import matplotlib.pyplot as plt 
import tflearn 
import tflearn.data_utils as du 

# Data loading and preprocessing 
import tflearn.datasets.mnist as mnist 
X, Y, testX, testY = mnist.load_data(one_hot=True) 

X = X.reshape([-1, 28, 28, 1]) 
testX = testX.reshape([-1, 28, 28, 1]) 
X, mean = du.featurewise_zero_center(X) 
testX = du.featurewise_zero_center(testX, mean) 

# Building the encoder 
encoder = tflearn.input_data(shape=[None, 28, 28, 1]) 
encoder = tflearn.conv_2d(encoder, 16, 3, activation='relu') 
encoder = tflearn.max_pool_2d(encoder, 2) 
encoder = tflearn.conv_2d(encoder, 8, 3, activation='relu') 
decoder = tflearn.upsample_2d(encoder, 2) 
decoder = tflearn.conv_2d(encoder, 1, 3, activation='relu') 

# Regression, with mean square error 
net = tflearn.regression(decoder, optimizer='adam', learning_rate=0.001, 
         loss='mean_square', metric=None) 

# Training the auto encoder 
model = tflearn.DNN(net, tensorboard_verbose=0) 
model.fit(X, X, n_epoch=10, validation_set=(testX, testX), 
      run_id="auto_encoder", batch_size=256) 

# Encoding X[0] for test 
print("\nTest encoding of X[0]:") 
# New model, re-using the same session, for weights sharing 
encoding_model = tflearn.DNN(encoder, session=model.session) 
print(encoding_model.predict([X[0]])) 

# Testing the image reconstruction on new data (test set) 
print("\nVisualizing results after being encoded and decoded:") 
testX = tflearn.data_utils.shuffle(testX)[0] 
# Applying encode and decode over test set 
encode_decode = model.predict(testX) 
# Compare original images with their reconstructions 
f, a = plt.subplots(2, 10, figsize=(10, 2)) 
for i in range(10): 
    a[0][i].imshow(np.reshape(testX[i], (28, 28))) 
    a[1][i].imshow(np.reshape(encode_decode[i], (28, 28))) 
f.show() 
plt.draw() 
plt.waitforbuttonpress() 
+0

謝謝你的好評。另外,我想知道爲什麼'padding ='same''不能和'net = tflearn.conv_2d(net,64,3,padding ='same',activation ='relu',偏置=假)' – David

相關問題