下面是一個簡單的實現功能:
public class ZipWithIndex {
public static void main(String[] args) throws Exception {
ExecutionEnvironment ee = ExecutionEnvironment.getExecutionEnvironment();
DataSet<String> in = ee.readTextFile("/home/robert/flink-workdir/debug/input");
// count elements in each partition
DataSet<Tuple2<Integer, Long>> counts = in.mapPartition(new RichMapPartitionFunction<String, Tuple2<Integer, Long>>() {
@Override
public void mapPartition(Iterable<String> values, Collector<Tuple2<Integer, Long>> out) throws Exception {
long cnt = 0;
for (String v : values) {
cnt++;
}
out.collect(new Tuple2<Integer, Long>(getRuntimeContext().getIndexOfThisSubtask(), cnt));
}
});
DataSet<Tuple2<Long, String>> result = in.mapPartition(new RichMapPartitionFunction<String, Tuple2<Long, String>>() {
long start = 0;
@Override
public void open(Configuration parameters) throws Exception {
super.open(parameters);
List<Tuple2<Integer, Long>> offsets = getRuntimeContext().getBroadcastVariable("counts");
Collections.sort(offsets, new Comparator<Tuple2<Integer, Long>>() {
@Override
public int compare(Tuple2<Integer, Long> o1, Tuple2<Integer, Long> o2) {
return ZipWithIndex.compare(o1.f0, o2.f0);
}
});
for(int i = 0; i < getRuntimeContext().getIndexOfThisSubtask(); i++) {
start += offsets.get(i).f1;
}
}
@Override
public void mapPartition(Iterable<String> values, Collector<Tuple2<Long, String>> out) throws Exception {
for(String v: values) {
out.collect(new Tuple2<Long, String>(start++, v));
}
}
}).withBroadcastSet(counts, "counts");
result.print();
}
public static int compare(int x, int y) {
return (x < y) ? -1 : ((x == y) ? 0 : 1);
}
}
這是它如何工作的:我使用的是第一mapPartition()
操作去了分區中的所有元素來算多少元素都在那裏。 我需要知道每個分區中元素的數量,以便在將元素分配給元素時正確設置偏移量。 第一個mapPartition
的結果是一個包含映射的DataSet。我將這個DataSet廣播給所有第二個運算符,它們將ID分配給輸入中的元素。 在第二個mapPartition()
的open()
方法中,我正在計算每個分區的偏移量。
我可能會將代碼貢獻給Flink(與其他提交者討論後)。
這是一個有趣的問題。我會試着想出一個實現。 –