我是新來的Python和我都莫名其妙地結束了列表的兩個列表,每個都包含一個整數(漂浮在以下Y),具體如下:刪除方括號? (新手)
>x
array([[11], [101], [1001], [10001], [100001]], dtype=object)
>y
array([[0.0], [0.0009751319885253906], [0.03459000587463379],
[3.7970290184020996], [498.934268951416]], dtype=object)
,我只想do是繪製x vs y,但這顯然不起作用,可能是出於多種原因,但至少因爲每個「值」都在方括號內(即列表本身)。我怎麼能阻止這些值(例如11,101,1001,10001)成爲列表?
:
從Fortran背景中,我與Python的列表,元組,數組numpy的陣列等,所有我希望做的是從一個文本文件,其內容(比如說)讀取大大掙扎11 0.0
101 0.0009751319885253906
1001 0.03459000587463379
10001 3.7970290184020996
1 00001 498.934268951416
並將第一個'列'讀爲x,第二個'列'讀爲y,目的是繪製這些數據。
任何人都可以請推薦一個在線課程,澄清列表,元組,數組等使用這種事情?
非常感謝提前。
編輯:爲了迴應人們的意見和建議,我包括我使用的代碼,輸入文件內容和運行結束時的交互式窗口輸出。
非常感謝所有回覆我的人,我發現所有意見和建議都非常有幫助。我將根據所有這些迴應採取行動,並嘗試爲自己弄清楚情況,但是如果有人可以看看我的代碼,「輸入文件」內容和交互式窗口「輸出」以查看他們是否可以幫助我進一步。再次,我真的很感謝人們花時間和精力與我溝通這件事。
下面是代碼:
import re
import numpy as np
import time
import pandas as pd
def dict2mat(res1, res2):
#
# input 2 dictionaries and return the content of the first as x
# and the content of the second as y
#
s = pd.Series(res1)
x = s.values
s = pd.Series(res2)
y = s.values
return x, y
f = open('results.txt', 'r')
nnp = {}
tgen = {}
tconn = {}
tcalc = {}
tfill = {}
iline = 0
for i in range(1000):
line = f.readline()
if "Example" in line:
#
# first line of text having numerical values of interest contains
# the string 'Example'
#
iline = iline+1
#
# extract number of nodes (integer)
#
nnp[iline] = [int(s) for s in re.findall(r"\d+", line)]
line = f.readline()
#
# extract time taken to generate data set (float)
#
tgen[iline] = [float(s) for s in re.findall(r"\d+[\.]\d+", line)]
line = f.readline()
#
# extract time taken to generate connectivity data (float)
#
tconn[iline] = [float(s) for s in re.findall(r"\d+[\.]\d+", line)]
line = f.readline()
#
# extract time taken to calculate error (float) for corners
#
tcalc[iline] = [float(s) for s in re.findall(r"\d+[\.]\d+", line)]
line = f.readline()
#
# extract time taken to fill in stress results at midsides (float)
#
tfill[iline] = [float(s) for s in re.findall(r"\d+[\.]\d+", line)]
#
# use function dict2mat to replace the contents of 'number of nodes'
# and each of the 'times' in turn by vectors x and y
#
xgen, ygen = dict2mat(nnp, tgen)
xconn, yconn = dict2mat(nnp, tconn)
xcalc, ycalc = dict2mat(nnp, tcalc)
xfill, yfill = dict2mat(nnp, tfill)
# get x and y vectors
x = np.array(xgen)
y = np.array(ygen)
print('x: ')
print(x)
print('y: ')
print(y)
下面是該代碼讀取文件的內容:
Random seed used to form data = 9001
Example has 11 generated global surface nodes
Time taken to generate the data: --- 0.002001047134399414 seconds ---
Time taken to find connectivity: --- 0.0 seconds ---
Time taken to calculate Stress Error for corner nodes only: --- 0.0004999637603759766 seconds ---
Time taken to fill-in midside node Stress Errors: --- 0.0 seconds ---
Random seed used to form data = 9001
Example has 101 generated global surface nodes
Time taken to generate the data: --- 0.01451420783996582 seconds ---
Time taken to find connectivity: --- 0.0 seconds ---
Time taken to calculate Stress Error for corner nodes only: --- 0.004984855651855469 seconds ---
Time taken to fill-in midside node Stress Errors: --- 0.0009751319885253906 seconds ---
Random seed used to form data = 9001
Example has 1001 generated global surface nodes
Time taken to generate the data: --- 0.10301804542541504 seconds ---
Time taken to find connectivity: --- 0.0 seconds ---
Time taken to calculate Stress Error for corner nodes only: --- 0.04008197784423828 seconds ---
Time taken to fill-in midside node Stress Errors: --- 0.03459000587463379 seconds ---
Random seed used to form data = 9001
Example has 10001 generated global surface nodes
Time taken to generate the data: --- 1.0397570133209229 seconds ---
Time taken to find connectivity: --- 0.0 seconds ---
Time taken to calculate Stress Error for corner nodes only: --- 0.41377687454223633 seconds ---
Time taken to fill-in midside node Stress Errors: --- 3.7970290184020996 seconds ---
Random seed used to form data = 9001
Example has 100001 generated global surface nodes
Time taken to generate the data: --- 10.153867959976196 seconds ---
Time taken to find connectivity: --- 0.0 seconds ---
Time taken to calculate Stress Error for corner nodes only: --- 3.938124895095825 seconds ---
Time taken to fill-in midside node Stress Errors: --- 498.934268951416 seconds ---
最後,這是出現在執行後的交互窗口:
x:
>>> print(x)
[[11] [101] [1001] [10001] [100001]]
>>> print('y: ')
y:
>>> print(y)
[[0.002001047134399414] [0.01451420783996582] [0.10301804542541504]
[1.0397570133209229] [10.153867959976196]]
>>>
我希望這一切都有所幫助,我在此先感謝任何人提供任何幫助, o提供。
Simon。
看起來您正在使用Numpy。我不認爲這種行爲是numpy獨有的,而只是一般的python語法。在我使用python的經驗中,我注意到[list.append()和list.extend()](http://stackoverflow.com/q/252703/1248974)之間的明顯區別。擴展列表往往有你看到的行爲,[文檔](https://docs.python.org/2/tutorial/datastructures.html#more-on-lists)將其解釋爲「通過擴展列表附加給定列表中的所有項目「,它可以像列表列表一樣,但是使用list.append()通常可以防止該問題。 – davedwards
爲了告訴你如何防止這些值成爲列表,我們需要首先看看如何創建這些列表。如果是這樣,請[編輯](http://stackoverflow.com/posts/40120103/edit)你的問題,幷包括你如何在你的問題的某個地方創建這些列表。 – davedwards
對於「課程」,澄清使用列表,元組,數組等,有許多免費的「教程」,以及完整的「課程」,有些是免費的,正如馬特麥卡洛在他的回答中提到的那樣。當然,還有付費課程,其中我發現非常有用的是[PluralSight](https://www.pluralsight.com/browse/software-development/python),特別是[Python基礎知識]( https://www.pluralsight.com/courses/python-fundamentals)課程。 – davedwards