2010-10-18 74 views
8

我無法找到單純形法的實現。我有一組點,並希望最小化這個距離,所以我只需要簡單的方法 我有谷歌,然後發佈這個問題,可以NT發現任何我可以使用的東西單純形方法的C/C++實現

+0

這是你在說什麼? http://en.wikipedia.org/wiki/Simplex_algorithm – 2010-10-18 06:21:42

+0

no ..我需要一個我們有一組方程和鬆弛變量..LP問題 – abas 2010-10-18 06:23:28

+0

對不起,我認爲這是我需要的..但​​是AC/C++函數 – abas 2010-10-18 06:24:47

回答

26
/* 
    What: Simplex in C 
    AUTHOR: GPL(C) moshahmed/at/gmail. 

    What: Solves LP Problem with Simplex: 
    { maximize cx : Ax <= b, x >= 0 }. 
    Input: { m, n, Mat[m x n] }, where: 
    b = mat[1..m,0] .. column 0 is b >= 0, so x=0 is a basic feasible solution. 
    c = mat[0,1..n] .. row 0 is z to maximize, note c is negated in input. 
    A = mat[1..m,1..n] .. constraints. 
    x = [x1..xm] are the named variables in the problem. 
    Slack variables are in columns [m+1..m+n] 

    USAGE: 
    1. Problem can be specified before main function in source code: 
     c:\> vim mosplex.c 
     Tableau tab = { m, n, { // tableau size, row x columns. 
      { 0 , -c1, -c2, }, // Max: z = c1 x1 + c2 x2, 
      { b1 , a11, a12, }, // b1 >= a11 x1 + a12 x2 
      { b2 , a21, a22, }, // b2 >= a21 x1 + a22 x2 
     } 
     }; 
     c:\> cl /W4 mosplex.c ... compile this file. 
     c:\> mosplex.exe problem.txt > solution.txt 

    2. OR Read the problem data from a file: 
     $ cat problem.txt 
      m n 
      0 -c1 -c2 
      b1 a11 a12 
      b2 a21 a11 
     $ gcc -Wall -g mosplex.c -o mosplex 
     $ mosplex problem.txt > solution.txt 
*/ 

#include <stdio.h> 
#include <stdlib.h> 
#include <math.h> 
#include <string.h> 
#include <assert.h> 

#define M 20 
#define N 20 

static const double epsilon = 1.0e-8; 
int equal(double a, double b) { return fabs(a-b) < epsilon; } 

typedef struct { 
    int m, n; // m=rows, n=columns, mat[m x n] 
    double mat[M][N]; 
} Tableau; 

void nl(int k){ int j; for(j=0;j<k;j++) putchar('-'); putchar('\n'); } 

void print_tableau(Tableau *tab, const char* mes) { 
    static int counter=0; 
    int i, j; 
    printf("\n%d. Tableau %s:\n", ++counter, mes); 
    nl(70); 

    printf("%-6s%5s", "col:", "b[i]"); 
    for(j=1;j<tab->n; j++) { printf(" x%d,", j); } printf("\n"); 

    for(i=0;i<tab->m; i++) { 
    if (i==0) printf("max:"); else 
    printf("b%d: ", i); 
    for(j=0;j<tab->n; j++) { 
     if (equal((int)tab->mat[i][j], tab->mat[i][j])) 
     printf(" %6d", (int)tab->mat[i][j]); 
     else 
     printf(" %6.2lf", tab->mat[i][j]); 
     } 
    printf("\n"); 
    } 
    nl(70); 
} 

/* Example input file for read_tableau: 
    4 5 
     0 -0.5 -3 -1 -4 
    40 1  1 1 1 
    10 -2 -1 1 1 
    10 0  1 0 -1 
*/ 
void read_tableau(Tableau *tab, const char * filename) { 
    int err, i, j; 
    FILE * fp; 

    fp = fopen(filename, "r"); 
    if(!fp) { 
    printf("Cannot read %s\n", filename); exit(1); 
    } 
    memset(tab, 0, sizeof(*tab)); 
    err = fscanf(fp, "%d %d", &tab->m, &tab->n); 
    if (err == 0 || err == EOF) { 
    printf("Cannot read m or n\n"); exit(1); 
    } 
    for(i=0;i<tab->m; i++) { 
    for(j=0;j<tab->n; j++) { 
     err = fscanf(fp, "%lf", &tab->mat[i][j]); 
     if (err == 0 || err == EOF) { 
     printf("Cannot read A[%d][%d]\n", i, j); exit(1); 
     } 
    } 
    } 
    printf("Read tableau [%d rows x %d columns] from file '%s'.\n", 
    tab->m, tab->n, filename); 
    fclose(fp); 
} 

void pivot_on(Tableau *tab, int row, int col) { 
    int i, j; 
    double pivot; 

    pivot = tab->mat[row][col]; 
    assert(pivot>0); 
    for(j=0;j<tab->n;j++) 
    tab->mat[row][j] /= pivot; 
    assert(equal(tab->mat[row][col], 1.)); 

    for(i=0; i<tab->m; i++) { // foreach remaining row i do 
    double multiplier = tab->mat[i][col]; 
    if(i==row) continue; 
    for(j=0; j<tab->n; j++) { // r[i] = r[i] - z * r[row]; 
     tab->mat[i][j] -= multiplier * tab->mat[row][j]; 
    } 
    } 
} 

// Find pivot_col = most negative column in mat[0][1..n] 
int find_pivot_column(Tableau *tab) { 
    int j, pivot_col = 1; 
    double lowest = tab->mat[0][pivot_col]; 
    for(j=1; j<tab->n; j++) { 
    if (tab->mat[0][j] < lowest) { 
     lowest = tab->mat[0][j]; 
     pivot_col = j; 
    } 
    } 
    printf("Most negative column in row[0] is col %d = %g.\n", pivot_col, lowest); 
    if(lowest >= 0) { 
    return -1; // All positive columns in row[0], this is optimal. 
    } 
    return pivot_col; 
} 

// Find the pivot_row, with smallest positive ratio = col[0]/col[pivot] 
int find_pivot_row(Tableau *tab, int pivot_col) { 
    int i, pivot_row = 0; 
    double min_ratio = -1; 
    printf("Ratios A[row_i,0]/A[row_i,%d] = [",pivot_col); 
    for(i=1;i<tab->m;i++){ 
    double ratio = tab->mat[i][0]/tab->mat[i][pivot_col]; 
    printf("%3.2lf, ", ratio); 
    if ((ratio > 0 && ratio < min_ratio) || min_ratio < 0) { 
     min_ratio = ratio; 
     pivot_row = i; 
    } 
    } 
    printf("].\n"); 
    if (min_ratio == -1) 
    return -1; // Unbounded. 
    printf("Found pivot A[%d,%d], min positive ratio=%g in row=%d.\n", 
     pivot_row, pivot_col, min_ratio, pivot_row); 
    return pivot_row; 
} 

void add_slack_variables(Tableau *tab) { 
    int i, j; 
    for(i=1; i<tab->m; i++) { 
    for(j=1; j<tab->m; j++) 
     tab->mat[i][j + tab->n -1] = (i==j); 
    } 
    tab->n += tab->m -1; 
} 

void check_b_positive(Tableau *tab) { 
    int i; 
    for(i=1; i<tab->m; i++) 
    assert(tab->mat[i][0] >= 0); 
} 

// Given a column of identity matrix, find the row containing 1. 
// return -1, if the column as not from an identity matrix. 
int find_basis_variable(Tableau *tab, int col) { 
    int i, xi=-1; 
    for(i=1; i < tab->m; i++) { 
    if (equal(tab->mat[i][col],1)) { 
     if (xi == -1) 
     xi=i; // found first '1', save this row number. 
     else 
     return -1; // found second '1', not an identity matrix. 

    } else if (!equal(tab->mat[i][col],0)) { 
     return -1; // not an identity matrix column. 
    } 
    } 
    return xi; 
} 

void print_optimal_vector(Tableau *tab, char *message) { 
    int j, xi; 
    printf("%s at ", message); 
    for(j=1;j<tab->n;j++) { // for each column. 
    xi = find_basis_variable(tab, j); 
    if (xi != -1) 
     printf("x%d=%3.2lf, ", j, tab->mat[xi][0]); 
    else 
     printf("x%d=0, ", j); 
    } 
    printf("\n"); 
} 

void simplex(Tableau *tab) { 
    int loop=0; 
    add_slack_variables(tab); 
    check_b_positive(tab); 
    print_tableau(tab,"Padded with slack variables"); 
    while(++loop) { 
    int pivot_col, pivot_row; 

    pivot_col = find_pivot_column(tab); 
    if(pivot_col < 0) { 
     printf("Found optimal value=A[0,0]=%3.2lf (no negatives in row 0).\n", 
     tab->mat[0][0]); 
     print_optimal_vector(tab, "Optimal vector"); 
     break; 
    } 
    printf("Entering variable x%d to be made basic, so pivot_col=%d.\n", 
     pivot_col, pivot_col); 

    pivot_row = find_pivot_row(tab, pivot_col); 
    if (pivot_row < 0) { 
     printf("unbounded (no pivot_row).\n"); 
     break; 
    } 
    printf("Leaving variable x%d, so pivot_row=%d\n", pivot_row, pivot_row); 

    pivot_on(tab, pivot_row, pivot_col); 
    print_tableau(tab,"After pivoting"); 
    print_optimal_vector(tab, "Basic feasible solution"); 

    if(loop > 20) { 
     printf("Too many iterations > %d.\n", loop); 
     break; 
    } 
    } 
} 

Tableau tab = { 4, 5, {      // Size of tableau [4 rows x 5 columns ] 
    { 0.0 , -0.5 , -3.0 ,-1.0 , -4.0, }, // Max: z = 0.5*x + 3*y + z + 4*w, 
    { 40.0 , 1.0 , 1.0 , 1.0 , 1.0, }, // x + y + z + w <= 40 .. b1 
    { 10.0 , -2.0 , -1.0 , 1.0 , 1.0, }, // -2x - y + z + w <= 10 .. b2 
    { 10.0 , 0.0 , 1.0 , 0.0 , -1.0, }, //  y  - w <= 10 .. b3 
    } 
}; 

int main(int argc, char *argv[]){ 
    if (argc > 1) { // usage: cmd datafile 
    read_tableau(&tab, argv[1]); 
    } 
    print_tableau(&tab,"Initial"); 
    simplex(&tab); 
    return 0; 
}