這裏有一個方法 -
1)輔助功能:
def argsort_unique(idx):
# Original idea : http://stackoverflow.com/a/41242285/3293881 by @Andras
n = idx.size
sidx = np.empty(n,dtype=int)
sidx[idx] = np.arange(n)
return sidx
def get_bin_arr(grplens, stop1_idx):
count_stops_corr = np.minimum(stop1_idx, grplens)
limsc = np.maximum(grplens, count_stops_corr)
L = limsc.sum()
starts = np.r_[0,limsc[:-1].cumsum()]
shift_arr = np.zeros(L,dtype=int)
stops = starts + count_stops_corr
stops = stops[stops<L]
shift_arr[starts] += 1
shift_arr[stops] -= 1
bin_arr = shift_arr.cumsum()
return bin_arr
可能更快的替代方案有糊塗的切片爲主的輔助功能:
def get_bin_arr(grplens, stop1_idx):
stop1_idx_corr = np.minimum(stop1_idx, grplens)
clens = grplens.cumsum()
out = np.zeros(clens[-1],dtype=int)
out[:stop1_idx_corr[0]] = 1
for i,j in zip(clens[:-1], clens[:-1] + stop1_idx_corr[1:]):
out[i:j] = 1
return out
2)主要功能:
def out_C(A, selDict):
k = np.array(selDict.keys())
v = np.array(selDict.values())
unq, C = np.unique(A, return_counts=1)
sidx3 = np.searchsorted(unq, k)
lims = np.zeros(len(unq),dtype=int)
lims[sidx3] = v
bin_arr = get_bin_arr(C, lims)
sidx2 = A.argsort()
out = bin_arr[argsort_unique(sidx2)]
return out
樣品試驗 -
原始的方法:
def org_app(df, selDict):
df['C'] = 0
d = selDict.copy()
for i, r in df.iterrows():
if d[r["A"]] > 0:
d[r["A"]] -=1
df.set_value(i, 'C', 1)
return df
案例#1:
>>> df = pd.DataFrame({'A': 'foo bar foo bar res foo bar res foo foo res'.split()})
>>> selDict = {"foo":2, "bar":3, "res":1}
>>> org_app(df, selDict)
A C
0 foo 1
1 bar 1
2 foo 1
3 bar 1
4 res 1
5 foo 0
6 bar 1
7 res 0
8 foo 0
9 foo 0
10 res 0
>>> out_C(df.A.values, selDict)
array([1, 1, 1, 1, 1, 0, 1, 0, 0, 0, 0])
案例#2:
>>> selDict = {"foo":20, "bar":30, "res":10}
>>> org_app(df, selDict)
A C
0 foo 1
1 bar 1
2 foo 1
3 bar 1
4 res 1
5 foo 1
6 bar 1
7 res 1
8 foo 1
9 foo 1
10 res 1
>>> out_C(df.A.values, selDict)
array([1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1])
這可以幫助嗎?我的想法是使用dups和限制..這使用排名。僞代碼。應用「1」,返回高於等級的「0」。 https://stackoverflow.com/questions/14671013/ranking-of-numpy-array-with-possible-duplicates – Merlin
@Merlin嗯,不要以爲''rankdata'可以幫助你在這裏。而且,任何這樣的應用方法本質上都是循環的。如果你正在處理少量的'keys',一個loopy方法/ apply可能是一個更好的選擇。我假設大數據和體面沒有。的鑰匙。 – Divakar
@Merlin很好,趕上!編輯。 – Divakar