我有解決牛頓方法的代碼,在上一次迭代中,輸出值出錯了。這些值不應該是負值,因爲我在紙上手動檢查了它。據我知道的代碼是正確的,但我不能在0和1之間。這裏是代碼弄清楚爲什麼會顯示負值,也是最終的U值最好應爲正值:牛頓方法的意外輸出
import copy
import math
tlist = [0.0, 0.07, 0.13, 0.15, 0.2, 0.22] # list of start time for the phonemes
w = 1.0
def time() :
t_u = 0.0
for i in range(len(tlist)- 1) :
t_u = t_u + 0.04 # regular time interval
print t_u
print tlist[i], ' ' , tlist[i+1], ' ', tlist[i -1]
if t_u >= tlist[i] and t_u <= tlist[i + 1] :
poly = poly_coeff(tlist[i], tlist[i + 1], t_u)
Newton(poly)
else :
poly = poly_coeff(tlist[i - 1], tlist[i], t_u)
Newton(poly)
def poly_coeff(start_time, end_time, t_u) :
"""The equation is k6 * u^3 + k5 * u^2 + k4 * u + k0 = 0. Computing the coefficients for this polynomial."""
"""Substituting the required values we get the coefficients."""
t0 = start_time
t3 = end_time
t1 = t2 = (t0 + t3)/2
w0 = w1 = w2 = w3 = w
k0 = w0 * (t_u - t0)
k1 = w1 * (t_u - t1)
k2 = w2 * (t_u - t2)
k3 = w3 * (t_u - t3)
k4 = 3 * (k1 - k0)
k5 = 3 * (k2 - 2 * k1 + k0)
k6 = k3 - 3 * k2 + 3 * k1 -k0
print k0, k1, k2, k3, k4, k5, k6
return [[k6,3], [k5,2], [k4,1], [k0,0]]
def poly_differentiate(poly):
""" Differentiate polynomial. """
newlist = copy.deepcopy(poly)
for term in newlist:
term[0] *= term[1]
term[1] -= 1
return newlist
def poly_substitute(poly, x):
""" Apply value to polynomial. """
sum = 0.0
for term in poly:
sum += term[0] * (x ** term[1])
return sum
def Newton(poly):
""" Returns a root of the polynomial"""
x = 0.5 # initial guess value
epsilon = 0.000000000001
poly_diff = poly_differentiate(poly)
while True:
x_n = x - (float(poly_substitute(poly, x))/float(poly_substitute(poly_diff, x)))
if abs(x_n - x) < epsilon :
break
x = x_n
print x_n
print "u: ", x_n
return x_n
if __name__ == "__main__" :
time()
對於最後一次迭代的輸出是下面,
其中K6 = -0.02,K5 = 0.03,K4 = -0.03和K0 = 0.0
0.2
0.2 0.22 0.15
0.0 -0.01 -0.01 -0.02 -0.03 0.03 -0.02
-0.166666666667
-0.0244444444444
-0.000587577730193
-3.45112269878e-07
-1.19102451449e-13
u: -1.42121180685e-26
的初始猜測值是0.5,所以如果它是取代的在多項式中,那麼輸出是-0.005。
然後再次在微分多項式中替換相同的初始值。結果是-0.015。
現在這些值在牛頓方程中被代入,那麼答案應該是0.166666667。但實際答案是一個負值。
謝謝。
** 1 **:你能解釋'poly_coeff'嗎?該算法來自哪裏?我所知道的所有其餘數學都是正確的,並且我得到了你發佈的答案。 ** 2 **:你說你已經在紙上手動檢查過了 - 你可以發佈這些計算,所以我們可以看到預期和實際之間有什麼區別? – Nate
@注意poly_coeff()計算註釋中給出的多項式的係數。然後用牛頓法計算該多項式的根。我將編輯顯示我的手動計算的問題。謝謝 – zingy