0
我想使用一個特性作爲響應變量來運行RF。我無法通過一個變量傳遞一個字符串作爲RF中的響應。首先,我嘗試在通過變量傳遞的字符串上運行RF作爲響應,並得到「向量長度不同的錯誤」。在此之後,我嘗試輸入實際的字符串(特徵)作爲響應,並且它工作正常。你能否介紹一下爲什麼可變長度不同?謝謝。隨機森林可變長度不同
> colnames(Data[1])
[1] "feature1"
> rf.file = randomForest(formula =colnames(Data[1])~ ., data = Data, proximity = T, importance = T, ntree = 500, nodesize = 3)
Error in model.frame.default(formula = colnames(Data[1]) ~ ., :
variable lengths differ (found for 'feature1')
Enter a frame number, or 0 to exit
1: randomForest(formula = colnames(Data[1]) ~ ., data = Data, proximity = T, importance = T, ntree = 500, nodesize = 3)
2: randomForest.formula(formula = colnames(Data[1]) ~ ., data = brainDataTrim, proximity = T, importance = T, ntree = 500, nodesize = 3)
3: eval(m, parent.frame())
4: eval(expr, envir, enclos)
5: model.frame(formula = colnames(Data[1]) ~ ., data = Data, na.action = function (object, ...)
6: model.frame.default(formula = colnames(Data[1]) ~ ., data = Data, na.action = function (object, ...)
Selection: 0
> rf.file = randomForest(formula =feature1~ ., data = Data, proximity = T, importance = T, ntree = 500, nodesize = 3)
> rf.file
Call:
randomForest(formula = feature1 ~ ., data = Data, proximity = T, importance = T, ntree = 500, nodesize = 3)
Type of random forest: regression
Number of trees: 500
No. of variables tried at each split: 3
Mean of squared residuals: 0.1536834
% Var explained: 34.21
>
感謝您的迴應!我發現可以使用paste來構造字符串以便在公式中使用,並且這種方式實際上可以實現。另一種方法是使用公式(x,y)並在實際數據表中調用座標以用作x,y座標:randomForest(Data [,-1],Data [,1] ,接近度= T) –