0
我使用的是randomforest來分析600行21個變量的訓練集。隨機森林不生成err.rate
# Construct Random Forest Model
rfmodel <- randomForest(default ~ .,
data = train.df,
ntree = 500,
mtry = 4,
importance = TRUE,
LocalImp = TRUE,
replace = FALSE)
print(rfmodel)
這生成以下內容:
> rfmodel <- randomForest(default ~ .,
+ data = train.df,
+ ntree = 500,
+ mtry = 4,
+ importance = TRUE,
+ LocalImp = TRUE,
+ replace = FALSE)
> Warning message:
> In randomForest.default(m, y, ...) :
> The response has five or fewer unique values. Are you sure you want to do
> regression?
> print(rfmodel)
>Call:
randomForest(formula = default ~ ., data = train.df, ntree = 500, mtry = 4, importance = TRUE, LocalImp = TRUE, replace = FALSE)
Type of random forest: regression
Number of trees: 500
No. of variables tried at each split: 4
Mean of squared residuals: 0.1577596
% Var explained: 23.89
這缺少某種原因混淆矩陣。當我嘗試生成err.rate,它給了我這樣的:
頭(rfmodel $ err.rate)
NULL
所以我的問題是,我在這裏做錯了什麼?我需要混淆矩陣與OOB和0和1基於「默認」這是可觀察的變量。 – user7273726
不要在評論中添加問題 - 編輯問題。 –