1
我不知道是否有人熟悉Bioconductor RankProduct軟件包的排名和獲得差異表達的基因。有關該軟件的一些信息如下paper,manual,documentation。基因排名微陣列
我在使用該程序時遇到了一些問題,可能是因爲我對R語言知之甚少。我試圖用我自己的數據複製上述pdf文件中的步驟。雖然我自己的數據集不像示例中那樣位於afffy .cel文件中,但僅作爲製表符分隔文件中的行和列。我有兩個條件(1和2中,複製爲每個= 4)
這是我的代碼:
library(RankProd)
library(preprocessCore)
#Read expression data
#gdata <- read.table(file="data2.txt", sep="\t", header=T) #9000 rows of genes X 8 columns of chips
gdata <- read.table(file="data2.txt", sep="\t", header=T, row.names=1) #9000 rows of genes X 8 columns of chips
#colnames(gdata)
# This vector contains the microarray sample names
SampleNames= names(data.frame(gdata[,-1]))
#names(datExpr)=gdata[,1]
# This vector contains the gene names
datExpr.gnames= gdata$GeneName
# Since the first column contains the gene names, exclude it.
# dataExp is then the matix required
datExpr=data.frame(gdata[,-1])
#convert data into matrix form
datExpr <- as.matrix(datExpr)
#data normalization - quantile normalization
#datExpr.log.norm <- normalize.quantiles((log2(datExpr)),copy=TRUE) #with logged data
datExpr <- datExpr.log.norm
#datExpr.norm <- normalize.quantiles(datExpr,copy=TRUE) #without logged data
#datExpr <- datExpr.norm
# Identify two class data - control/treatment (or condition 1/condition2)
nl <- 4
n2 <- 4
cl <- rep(c(0,1), c(nl, n2))
datExpr.cl <- cl
# data were generated under identical or very similar conditions except the
# factor of interest (e.g., control and treatment),
origin <- rep(1, nl + n2)
datExpr.origin <- origin
# Data anslysis
datExpr.sub <- datExpr[,which(datExpr.origin == 1)]
datExpr.cl.sub <- datExpr.cl[which(datExpr.origin == 1)]
datExpr.origin.sub <- datExpr.origin[which(datExpr.origin == 1)]
#Rank product analysis and output
#RP.out <- RP(datExpr.sub, datExpr.cl.sub, num.perm = 100, logged = TRUE,na.rm = FALSE, plot = FALSE, rand = 123)
RP.out <- RPadvance(datExpr.sub, datExpr.cl.sub, datExpr.origin.sub, num.perm = 100,logged = TRUE,
na.rm = FALSE, gene.names = datExpr.gnames, plot = FALSE,rand = 123)
# Output a table of the identified genes based on user-specified selection criteria
topGene(RP.out, cutoff = 0.05, method = "pfp", logged = TRUE,logbase = 2, gene.names = datExpr.gnames)
我並運行該代碼,但在一個條件VS的差異表達基因的我的倍數變化其他都是0或無限。我想知道有這方面經驗的人能否幫助我。
謝謝Csgillespie。我決定改用RankProdIt(交互式程序),這對我的需求很有用。 – 2013-02-15 03:51:15