我正在嘗試使用修復陣列實現Haskell中三相結構光掃描的相位解纏算法。我想實現從點(寬度/ 2,高度/ 2)向外遞歸的基於洪泛填充的解包算法。不幸的是,使用這種遞歸方法,我得到了一個內存不足的例外。我是Haskell和Repa庫的新手,所以我想知道它是否看起來像我做任何明顯錯誤的事情。任何幫助,將不勝感激!使用Haskell修復陣列實現相位解纏算法
更新(@leventov):
我現在正在考慮實施以下使用可變數組在Yarr算法如下路徑。 (出版物:K. Chen,J. Xi,Y. Yu & JF Chicharo,「用於三維條紋圖形輪廓術的快速質量引導填充相位解纏算法」,在工業應用的光學計量和檢驗中, 2010, 1-9。)
{-# OPTIONS_GHC -Odph -rtsopts -fno-liberate-case -fllvm -optlo-O3 -XTypeOperators -XNoMonomorphismRestriction #-}
module Scanner where
import Data.Word
import Data.Fixed
import Data.Array.Repa.Eval
import qualified Data.Array.Repa as R
import qualified Data.Array.Repa.Repr.Unboxed as U
import qualified Data.Array.Repa.Repr.ForeignPtr as P
import Codec.BMP
import Data.Array.Repa.IO.BMP
import Control.Monad.Identity (runIdentity)
import System.Environment(getArgs)
type ImRead = Either Error Image
type Avg = P.Array R.U R.DIM2 (ImageT, ImageT, ImageT)
type ImageT = (Word8, Word8, Word8)
type PhaseT = (Float, Float, Float)
type WrapT = (Float, Int)
type Image = P.Array R.U R.DIM2 (Word8, Word8, Word8)
type Phase = P.Array R.U R.DIM2 (Float, Float, Float)
type Wrap = P.Array R.U R.DIM2 (Float, Int)
type UWrapT = (Float, Int, [(Int, Int)], String)
type DepthT = (Float, Int, String)
{-# INLINE noise #-}
{-# INLINE zskew #-}
{-# INLINE zscale #-}
{-# INLINE compute #-}
{-# INLINE main #-}
{-# INLINE doMain #-}
{-# INLINE zipImg #-}
{-# INLINE mapWrap #-}
{-# INLINE avgPhase #-}
{-# INLINE doAvg #-}
{-# INLINE doWrap #-}
{-# INLINE doPhase #-}
{-# INLINE isPhase #-}
{-# INLINE diffPhase #-}
{-# INLINE shape #-}
{-# INLINE countM #-}
{-# INLINE inArr #-}
{-# INLINE idx #-}
{-# INLINE getElem #-}
{-# INLINE start #-}
{-# INLINE unwrap #-}
{-# INLINE doUnwrap #-}
{-# INLINE doDepth #-}
{-# INLINE write #-}
noise :: Float
noise = 0.1
zskew :: Float
zskew = 24
zscale :: Float
zscale = 130
compute :: (R.Shape sh, U.Unbox e) => P.Array R.D sh e -> P.Array R.U sh e
compute a = runIdentity (R.computeP a)
main :: IO()
main = do
commandArguments <- getArgs
case commandArguments of
(file1 : file2 : file3 : _) -> do
image1 <- readImageFromBMP file1
image2 <- readImageFromBMP file2
image3 <- readImageFromBMP file3
doMain image1 image2 image3
_ -> putStrLn "Not enough arguments"
doMain :: ImRead -> ImRead -> ImRead -> IO()
doMain (Right i1) (Right i2) (Right i3) = write
where
write = writeFile "out.txt" str
(p, m, d, str) = start $ mapWrap i1 i2 i3
doMain _ _ _ = putStrLn "Error loading image"
zipImg :: Image -> Image -> Image -> Avg
zipImg i1 i2 i3 = U.zip3 i1 i2 i3
mapWrap :: Image -> Image -> Image -> Wrap
mapWrap i1 i2 i3 = compute $ R.map wrap avg
where
wrap = (doWrap . avgPhase)
avg = zipImg i1 i2 i3
avgPhase :: (ImageT, ImageT, ImageT) -> PhaseT
avgPhase (i1, i2, i3) = (doAvg i1, doAvg i2, doAvg i3)
doAvg :: ImageT -> Float
doAvg (r, g, b) = (r1 + g1 + b1)/d1
where
r1 = fromIntegral r
g1 = fromIntegral g
b1 = fromIntegral b
d1 = fromIntegral 765
doWrap :: PhaseT -> WrapT
doWrap (p1, p2, p3) = (wrap, mask)
where
wrap = isPhase $ doPhase (p1, p2, p3)
mask = isNoise $ diffPhase [p1, p2, p3]
doPhase :: PhaseT -> (Float, Float)
doPhase (p1, p2, p3) = (x1, x2)
where
x1 = sqrt 3 * (p1 - p3)
x2 = 2 * p2 - p1 - p3
isPhase :: (Float, Float) -> Float
isPhase (x1, x2) = atan2 x1 x2/(2 * pi)
diffPhase :: [Float] -> Float
diffPhase phases = maximum phases - minimum phases
isNoise :: Float -> Int
isNoise phase = fromEnum $ phase <= noise
shape :: Wrap -> [Int]
shape wrap = R.listOfShape $ R.extent wrap
countM :: Wrap -> (Float, Int)
countM wrap = R.foldAllS count (0,0) wrap
where count = (\(x, y) (i, j) -> (x, y))
start :: Wrap -> UWrapT
start wrap = unwrap wrap (x, y) (ph, m, [], "")
where
[x0, y0] = shape wrap
x = quot x0 2
y = quot y0 2
(ph, m) = getElem wrap (x0, y0)
inArr :: Wrap -> (Int, Int) -> Bool
inArr wrap (x,y) = x >= 0 && y >= 0 && x < x0 && y < y0
where
[x0, y0] = shape wrap
idx :: (Int, Int) -> (R.Z R.:. Int R.:. Int)
idx (x, y) = (R.Z R.:. x R.:. y)
getElem :: Wrap -> (Int, Int) -> WrapT
getElem wrap (x, y) = wrap R.! idx (x, y)
unwrap :: Wrap -> (Int, Int) -> UWrapT -> UWrapT
unwrap wrap (x, y) (ph, m, done, str) =
if
not $ inArr wrap (x, y) ||
(x, y) `elem` done ||
toEnum m::Bool
then
(ph, m, done, str)
else
up
where
unwrap' = doUnwrap wrap (x, y) (ph, m, done, str)
right = unwrap wrap (x+1, y) unwrap'
left = unwrap wrap (x-1, y) right
down = unwrap wrap (x, y+1) left
up = unwrap wrap (x, y-1) down
doUnwrap :: Wrap -> (Int, Int) -> UWrapT -> UWrapT
doUnwrap wrap (x, y) (ph, m, done, str) = unwrapped
where
unwrapped = (nph, m, (x, y):done, out)
(phase, mask) = getElem wrap (x, y)
rph = fromIntegral $ round ph
off = phase - (ph - rph)
nph = ph + (mod' (off + 0.5) 1) - 0.5
out = doDepth wrap (x, y) (nph, m, str)
doDepth :: Wrap -> (Int, Int) -> DepthT -> String
doDepth wrap (x, y) (ph, m, str) = write (x, ys, d, str)
where
[x0, y0] = shape wrap
ys = y0 - y
ydiff = fromIntegral (y - (quot y0 2))
plane = 0.5 - ydiff/zskew
d = (ph - plane) * zscale
write :: (Int, Int, Float, String) -> String
write (x, y, depth, str) = str ++ vertex
where
vertex = xstr ++ ystr ++ zstr
xstr = show x ++ " "
ystr = show y ++ " "
zstr = show depth ++ "\n"
請問您可以添加導入以及其他任何需要使用'ghc --make'編譯的內容嗎? – jberryman
@jberryman添加了完整的模塊以允許編譯。算法的第一部分(包裝)部分按預期工作。命令行參數是三個bmp圖像(相移模式)。 – Rowan
@leventov感謝您的建議。我以前曾嘗試內聯所有'worker'函數,但沒有更改內存不足異常,並且不幸的是,將INLINE添加到所有函數都不起作用。我已經查看了你的Yarr庫以獲取Haskell,並且有興趣使用可變數組結構來實現上圖中的算法(或現有的洪泛填充算法)。你能否概述我將如何開始使用這些數組結構? – Rowan