我在使用value_counts方法時遇到了帶有熊貓稀疏數據幀的TypeError。我列出了我正在使用的軟件包版本。熊貓稀疏數據幀value_counts不起作用
關於如何使這項工作的任何建議?
在此先感謝。此外,請讓我知道是否需要更多信息。
Python 2.7.6 |Anaconda 1.9.1 (x86_64)| (default, Jan 10 2014, 11:23:15)
[GCC 4.0.1 (Apple Inc. build 5493)] on darwin
Type "help", "copyright", "credits" or "license" for more information.
>>> import pandas
>>> print pandas.__version__
0.13.1
>>> import numpy
>>> print numpy.__version__
1.8.0
>>> dense_df = pandas.DataFrame(numpy.zeros((10, 10))
,columns=['x%d' % ix for ix in range(10)])
>>> dense_df['x5'] = [1.0, 0.0, 0.0, 1.0, 2.1, 3.0, 0.0, 0.0, 0.0, 0.0]
>>> print dense_df['x5'].value_counts()
0.0 6
1.0 2
3.0 1
2.1 1
dtype: int64
>>> sparse_df = dense_df.to_sparse(fill_value=0) # Tried fill_value=0.0 also
>>> print sparse_df.density
0.04
>>> print sparse_df['x5'].value_counts()
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "//anaconda/lib/python2.7/site-packages/pandas/core/series.py", line 1156, in value_counts
normalize=normalize, bins=bins)
File "//anaconda/lib/python2.7/site-packages/pandas/core/algorithms.py", line 231, in value_counts
values = com._ensure_object(values)
File "generated.pyx", line 112, in pandas.algos.ensure_object (pandas/algos.c:38788)
File "generated.pyx", line 117, in pandas.algos.ensure_object (pandas/algos.c:38695)
File "//anaconda/lib/python2.7/site-packages/pandas/sparse/array.py", line 377, in astype
raise TypeError('Can only support floating point data for now')
TypeError: Can only support floating point data for now
您是否在https://github.com/pydata/pandas/issues提出了錯誤? – smci
剛剛做到了。謝謝你的提示。 – bdanalytics